首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
We use long-slit spectroscopic optical data to derive the properties of the extended emitting gas and the nuclear luminosity of a sample of 18 Seyfert 2 galaxies. From the emission-line luminosities and ratios we derive the density, reddening and mass of the ionized gas as a function of distance up to 2–4 kpc from the nucleus. Taking into account the geometric dilution of the nuclear radiation, we derive the radial distribution of covering factors and the minimum rate of ionizing photons emitted by the nuclear source. This number is an order of magnitude larger than that obtained from the rate of ionizing photons 'intercepted' by the gas and measured from the Hα luminosity. A calibration is proposed to recover this number from the observed luminosity. The He  ii λ4686/Hβ line ratio was used to calculate the slope of the ionizing spectral energy distribution (SED), which in combination with the number of ionizing photons allows the calculation of the hard X-ray luminosities. These luminosities are consistent with those derived from X-ray spectra in the eight cases for which such data are available and recover the intrinsic X-ray emission in Compton-thick cases. Our method can thus provide reliable estimates of the X-ray fluxes in Seyfert 2 galaxies for the cases where it is not readily available. We also use the ionizing SED and luminosity to predict the infrared luminosity under the assumption that it is dominated by reprocessed radiation from a dusty torus, and find a good agreement with the observed IRAS luminosities.  相似文献   

2.
We calculate the X-ray emission from both constant and time-evolving shocked fast winds blown by the central stars of planetary nebulae (PNe) and compare our calculations with observations. Using spherically symmetric numerical simulations with radiative cooling, we calculate the flow structure and the X-ray temperature and luminosity of the hot bubble formed by the shocked fast wind. We find that a constant fast wind gives results that are very close to those obtained from the self-similar solution. We show that in order for a fast shocked wind to explain the observed X-ray properties of PNe, rapid evolution of the wind is essential. More specifically, the mass-loss rate of the fast wind should be high early on when the speed is  ∼300–700 km s−1  , and then it needs to drop drastically by the time the PN age reaches ∼1000 yr. This implies that the central star has a very short pre-PN (post-asymptotic giant branch) phase.  相似文献   

3.
We present 3D hydrodynamical simulations of the superbubble M17, also known as the Omega Nebula, carried out with the adaptive grid code yguazú-a , which includes radiative cooling. The superbubble is modelled considering the winds of 11 individual stars from the open cluster inside the nebula (NGC 6618), for which there are estimates of the mass-loss rates and terminal velocities based on their spectral types. These stars are located inside a dense interstellar medium, and they are bounded by two dense molecular clouds. We carried out three numerical models of this scenario, considering different line-of-sight positions of the stars (the position in the plane of the sky is known, thus fixed). Synthetic thermal X-ray emission maps are calculated from the numerical models and compared with ROSAT observations of this astrophysical object. Our models successfully reproduce both the observed X-ray morphology and the total X-ray luminosity, without taking into account the thermal conduction effects.  相似文献   

4.
We use high-resolution hydrodynamic resimulations to investigate the properties of the thermal Sunyaev–Zel'dovich (SZ) effect from galaxy clusters. We compare results obtained using different physical models for the intracluster medium (ICM), and show how they modify the SZ emission in terms of cluster profiles and scaling relations. We also produce realistic mock observations to verify whether the results from hydrodynamic simulations can be confirmed. We find that SZ profiles depend marginally on the modelled physical processes, while they exhibit a strong dependence on cluster mass. The central and total SZ emission strongly correlates with the cluster X-ray luminosity and temperature. The logarithmic slopes of these scaling relations differ from the self-similar predictions by less than 0.2; the normalization of the relations is lower for simulations including radiative cooling. The observational test suggests that SZ cluster profiles are unlikely to be able to probe the ICM physics. The total SZ decrement appears to be an observable much more robust than the central intensity, and we suggest using the former to investigate scaling relations.  相似文献   

5.
Radio surveys of supernova remnants (SNRs) in the Galaxy have discovered 19 SNRs which are accompanied by the OH maser emission at 1720 MHz. This unusual maser is thought to be produced behind a shock front when a SNR expands into a molecular cloud. An important ingredient of this model is that the X-ray emission from the remnant enhances the production of OH molecules. In this sense, to study the characteristics of the mixed-morphology SNRs accompanied by the OH maser emission at 1720 MHz is important. By studying the X-ray characteristics of the mixed-morphology SNRs accompanied by the 1720 MHz OH maser emission, it is found that the ionization rate of X-ray is not correlated with the physical parameters , D, r, r2 and so on, but is correlated with the X-ray luminosity Lx. Meanwhile, Lx is closely correlated with the beam flux density of the weakest feature of the accompanying 1720 MHz OH maser emission. These mean that the X-ray emission from SNRs is sufficient to dissociate the water molecules behind a shock front and to produce the 1720 MHz OH masers.  相似文献   

6.
Wide-field mapping of Serpens in submillimetre continuum emission and CO J =2–1 line emission is here complemented by optical imaging in [S  ii ] λλ 6716, 6731 line emission. Analysis of the 450- and 850-μm continuum data shows at least 10 separate sources, along with fainter diffuse background emission and filaments extending to the south and east of the core. These filaments describe 'cavity-like' structures that may have been shaped by the numerous outflows in the region. The dust opacity index, β , derived for the identifiable compact sources is of the order of 1.0±0.2, with dust temperatures in excess of 20 K. This value of β is somewhat lower than for typical class I YSOs; we suggest that the Serpens sources may be 'warm', late class 0 or early class I objects.
With the combined CO and optical data we also examine, on large scales, the outflows driven by the embedded sources in Serpens. In addition to a number of new Herbig–Haro flows (here denoted HH 455–460), a number of high-velocity CO lobes are observed; these extend radially outwards from the cluster of submillimetre sources in the core. A close association between the optical and molecular flows is also identified. The data suggest that many of the submillimetre sources power outflows. Collectively, the outflows traced in CO support the widely recognized correlation between source bolometric luminosity and outflow power, and imply a dynamical age for the whole protostellar cluster of ∼3×104 yr. Notably, this is roughly equal to the proposed duration of the 'class 0' stage in protostellar evolution.  相似文献   

7.
We present almost-simultaneous detections of Cygnus X-1 in the radio and mm regimes, obtained during the low/hard X-ray state. The source displays a flat spectrum between 2 and 220 GHz, with a spectral index | α |0.15 (3 σ ). There is no evidence for either a low- or high-frequency cut-off, but in the mid-infrared (∼30 μm) thermal emission from the OB-type companion star becomes dominant. The integrated luminosity of this flat-spectrum emission in quiescence is 2×1031 erg s−1 (2×1024 W). Assuming the emission originates in a jet for which non-radiative (e.g. adiabatic expansion) losses dominate, this is a very conservative lower limit on the power required to maintain the jet. A comparison with Cyg X-3 and GRS 1915+105, the other X-ray binaries for which a flat spectrum at shorter than cm wavelengths has been observed, shows that the jet in Cyg X-1 is significantly less luminous and less variable, and is probably our best example to date of a continuous, steady, outflow from an X-ray binary. The emissive mechanism responsible for such a flat spectral component remains uncertain. Specifically, we note that the radio–mm spectra observed from these X-ray binaries are much flatter than those of the 'flat-spectrum' AGN, and that existing models of synchrotron emission from partially self-absorbed radio cores, which predict a high-frequency cut-off in the mm regime, are not directly applicable.  相似文献   

8.
We present X-ray imaging spectroscopy of the extremely luminous infrared galaxy IRAS 09104+4109     obtained with the Chandra X-ray Observatory. With the arcsec resolution of Chandra , an unresolved source at the nucleus is separated from the surrounding cluster emission. A strong iron K line at 6.4 keV on a very hard continuum is detected from the nuclear source, rendering IRAS 09104+4109 the most distant reflection-dominated X-ray source known. Combined with the BeppoSAX detection of the excess hard X-ray emission, it provides further strong support for the presence of a hidden X-ray source of quasar luminosity in this infrared galaxy. Also seen is a faint linear structure to the north, which coincides with the main radio jet. An X-ray deficit in the corresponding region suggests an interaction between the cluster medium and the jet driven by the active nucleus.  相似文献   

9.
Using a deep Chandra observation of the Perseus cluster of galaxies, we find a high-abundance shell 250 arcsec (93 kpc) from the central nucleus. This ridge lies at the edge of the Perseus radio mini-halo. In addition we identify two Hα filaments pointing towards this shell. We hypothesize that this ridge is the edge of a fossil radio bubble, formed by entrained enriched material lifted from the core of the cluster. There is a temperature jump outside the shell, but the pressure is continuous indicating a cold front. A non-thermal component is mapped over the core of the cluster with a morphology similar to the mini-halo. Its total luminosity is  4.8 × 1043 erg s−1  , extending in radius to ∼75 kpc. Assuming the non-thermal emission to be the result of inverse Compton scattering of the cosmic microwave background and infrared emission from NGC 1275, we map the magnetic field over the core of the cluster.  相似文献   

10.
We present here the first study of the X-ray properties of an evolutionary sample of merging galaxies. Both ROSAT PSPC and HRI data are presented for a sample of eight interacting galaxy systems, each believed to involve a similar encounter between two spiral discs of approximately equal size. The mergers span a large range in age, from completely detached to fully merged systems.
A great deal of interesting X-ray structure is seen, and the X-ray properties of each individual system are discussed in detail. Along the merging sequence, several trends are evident: in the case of several of the infrared bright systems, the diffuse emission is very extended, and appears to arise from material ejected from the galaxies. The onset of this process seems to occur very soon after the galaxies first encounter one another, and these ejections soon evolve into distorted flows. More massive extensions (perhaps involving up to 1010 M⊙ of hot gas) are seen at the 'ultraluminous' peak of the interaction, as the galactic nuclei coalesce.
The amplitude of the evolution of the X-ray emission through a merger is markedly different from that of the infrared and radio emission, however. Although the X-ray luminosity rises and falls along the sequence, the factor by which the X-ray luminosity increases, relative to the optical, appears to be only about a tenth of that seen in the far-infrared. This, we believe, may well be linked with the large extensions of hot gas observed.
The late, relaxed remnants appear relatively devoid of gas, and possess an X-ray halo very different from that of typical ellipticals, a problem for the 'merger hypothesis', whereby the merger of two disc galaxies results in an elliptical galaxy. However, these systems are still relatively young in terms of total merger lifetime, and they may still have a few Gyr of evolution to go through before they resemble typical elliptical galaxies.  相似文献   

11.
We summarize all the reported detections of, and upper limits to, the radio emission from persistent (i.e. non-transient) X-ray binaries. A striking result is a common mean observed radio luminosity from the black hole candidates (BHCs) in the low/hard X-ray state and the neutron star Z sources on the horizontal X-ray branch. This implies a common mean intrinsic radio luminosity to within a factor of 25 (or less, if there is significant Doppler boosting of the radio emission). Unless coincidental, these results imply a physical mechanism for jet formation that requires neither a black hole event horizon nor a neutron star surface. As a whole the populations of Atoll and X-ray pulsar systems are less luminous by factors of ≳5 and ≳10 at radio wavelengths than the BHCs and Z sources (while some Atoll sources have been detected, no high-field X-ray pulsar has ever been reliably detected as a radio source). We suggest that all of the persistent BHCs and the Z sources generate, at least sporadically, an outflow with physical dimensions 1012 cm; that is, significantly larger than the binary separations of most of the systems. We compare the physical conditions of accretion in each of the types of persistent X-ray binary and conclude that a relatively low (1010 G) magnetic field associated with the accreting object, and a high (0.1 Eddington) accretion rate and/or dramatic physical change in the accretion flow, are required for formation of a radio-emitting outflow or jet.  相似文献   

12.
We review existing ROSAT detections of single Galactic Wolf–Rayet (WR) stars and develop wind models to interpret the X-ray emission. The ROSAT data, consisting of bandpass detections from the ROSAT All-Sky Survey (RASS) and some pointed observations, exhibit no correlations of the WR X-ray luminosity ( L X) with any star or wind parameters of interest (e.g. bolometric luminosity, mass-loss rate or wind kinetic energy), although the dispersion in the measurements is quite large. The lack of correlation between X-ray luminosity and wind parameters among the WR stars is unlike that of their progenitors, the O stars, which show trends with such parameters. In this paper we seek to (i) test by how much the X-ray properties of the WR stars differ from the O stars and (ii) place limits on the temperature T X and filling factor f X of the X-ray-emitting gas in the WR winds. Adopting empirically derived relationships for T X and f X from O-star winds, the predicted X-ray emission from WR stars is much smaller than observed with ROSAT . Abandoning the T X relation from O stars, we maximize the cooling from a single-temperature hot gas to derive lower limits for the filling factors in WR winds. Although these filling factors are consistently found to be an order of magnitude greater than those for O stars, we find that the data are consistent (albeit the data are noisy) with a trend of in WR stars, as is also the case for O stars.  相似文献   

13.
We present a model to predict the clustering properties of X-ray selected clusters in flux-limited surveys. Our technique correctly accounts for past light-cone effects on the observed clustering and follows the non-linear evolution in redshift of the underlying dark matter correlation function and cluster bias factor. The conversion of the limiting flux of a survey into the corresponding minimum mass of the hosting dark matter haloes is obtained by using theoretical and empirical relations between mass, temperature and X-ray luminosity of galaxy clusters. Finally, our model is calibrated to reproduce the observed cluster counts adopting a temperature–luminosity relation moderately evolving with redshift. We apply our technique to three existing catalogues: the ROSAT Brightest Cluster Sample (BCS); the X-ray Brightest Abell-type Cluster sample (XBACs); and the ROSAT –ESO Flux-Limited X-ray sample (REFLEX). Moreover, we consider an example of possible future space missions with fainter limiting flux. In general, we find that the amplitude of the spatial correlation function is a decreasing function of the limiting flux and that the Einstein–de Sitter models always give smaller correlation amplitudes than open or flat models with low matter density parameter Ω0m. In the case of the XBACs catalogue, the comparison with previous estimates of the observational spatial correlation shows that only the predictions of models with Ω0m=0.3 are in good agreement with the data, while the Einstein–de Sitter models have too low a correlation strength. Finally, we use our technique to discuss the best strategy for future surveys. Our results show that, to study the clustering properties of X-ray selected clusters, the choice of a wide area catalogue, even with a brighter limiting flux, is preferable to a deeper, but smaller area, survey.  相似文献   

14.
We present results from an ongoing X-ray survey of Wolf–Rayet (WR) galaxies, a class of objects believed to be very young starbursts. This paper extends the first X-ray survey of WR galaxies by Stevens &38; Strickland by studying WR galaxies identified subsequent to the original WR galaxy catalogue of Conti.   Out of a sample of 40 new WR galaxies a total of 10 have been observed with the ROSAT PSPC, and of these seven have been detected (NGC 1365, NGC 1569, I Zw 18, NGC 3353, NGC 4449, NGC 5408 and a marginal detection of NGC 2366). Of these, all are dwarf starbursts except for NGC 1365, which is a barred spiral galaxy possibly with an active nucleus. We also report on observations of the related emission-line galaxy IRAS 0833+6517.   The X-ray properties of these galaxies are broadly in line with those found for the original sample; they are X-ray overluminous compared with their blue luminosity and have thermal spectra with typically kT  ∼ 0.4 − 1.0 keV. There are some oddities: NGC 5408 is very overluminous in X-rays, even compared with other WR galaxies; I Zw 18 has a harder X-ray spectrum; NGC 1365, although thought to contain an active nucleus, has X-ray properties that are broadly similar to other WR galaxies, and we suggest that the X-ray emission from NGC 1365 is due to starburst activity.   A good correlation between X-ray and blue luminosity is found for the WR galaxy sample as a whole. However, when just dwarf galaxies are considered there is little evidence of correlation. We discuss the implications of these results on our understanding of the X-ray emission from WR galaxies and suggest that the best explanation for the X-ray activity is starburst activity from a young starburst region.  相似文献   

15.
Drawing on recent estimates of the power of jets from X-ray binary systems as a function of X-ray luminosity, combined with improved estimates of the relevant  log( N )–log( L X)  luminosity functions, we calculate the total energy input to the interstellar medium (ISM) from these objects. The input of kinetic energy to the ISM via jets is dominated by those of the black hole systems, in contrast to the radiative input, which is dominated by accreting neutron stars. Summing the energy input from black hole jets L J in the Milky Way, we find that it is likely to correspond to ≥1 per cent of L SNe, the time-averaged kinetic luminosity of supernovae, and ≥5 per cent of L CR, the cosmic ray luminosity. Given uncertainties in jet power estimates, significantly larger contributions are possible. Furthermore, in elliptical galaxies with comparable distributions of low mass X-ray binaries, but far fewer supernovae, the ratio   L J/ L SNe  is likely to be larger by a factor of ∼5. We conclude that jets from X-ray binaries may be an important, distributed, source of kinetic energy for the ISM in the form of relativistic shocks, and as a result are likely to be a major source of cosmic rays.  相似文献   

16.
We present a statistical analysis of the largest X-ray survey of nearby spiral galaxies in which diffuse emission has been separated from discrete source contributions. Regression and rank-order correlation analyses are used to compare X-ray properties, such as total, source and diffuse luminosities and diffuse emission temperature, with a variety of physical and multiwavelength properties, such as galaxy mass, type and activity, and optical and infrared luminosity.
The results are discussed in terms of the way in which hot gas and discrete X-ray sources scale with the mass and activity of galaxies, and with the star formation rate. We find that the X-ray properties of starburst galaxies are dependent primarily on their star-forming activity, whilst for more quiescent galaxies, galaxy mass is the more important parameter. One of the most intriguing results is the tight linear scaling between far-infrared and diffuse X-ray luminosity across the sample, even though the hot gas changes from a hydrostatic corona to a free wind across the activity range sampled here.  相似文献   

17.
We present multifrequency radio continuum as well as H  i observations of the superwind galaxy NGC 1482, with both the Giant Metrewave Radio Telescope (GMRT) and the Very Large Array (VLA). This galaxy has a remarkable hourglass-shaped optical emission-line outflow as well as bipolar soft X-ray bubbles on opposite sides of the galactic disc. The low-frequency, lower-resolution radio observations show a smooth structure. From the non-thermal emission, we estimate the available energy in supernovae, and examine whether this would be adequate to drive the observed superwind outflow. The high-frequency, high-resolution radio image of the central starburst region located at the base of the superwind bi-cone shows one prominent peak and more extended emission with substructure. This image has been compared with the infrared, optical red continuum, Hα, and soft and hard X-ray images from Chandra to understand the nature and relationship of the various features seen at different wavelengths. The peak of the infrared emission is the only feature that is coincident with the prominent radio peak, and possibly defines the centre of the galaxy.
The H  i observations with the GMRT show two blobs of emission on opposite sides of the central region. These are rotating about the centre of the galaxy and are located at ∼2.4 kpc from it. In addition, these observations also reveal a multicomponent H  i absorption profile against the central region of the radio source, with a total width of ∼250 km s−1. The extreme blue- and redshifted absorption components are at 1688 and 1942 km s−1, respectively, while the peak absorption is at 1836 km s−1. This is consistent with the heliocentric systemic velocity of  1850 ± 20 km s−1  , estimated from a variety of observations. We discuss possible implications of these results.  相似文献   

18.
We present a catalogue of 17 filamentary X-ray features located within a  68 × 34  arcmin2  view centred on the Galactic Centre region from images taken by Chandra . These features are described by their morphological and spectral properties. Many of the X-ray features have non-thermal spectra that are well fitted by an absorbed power law. Of the 17 features, we find six that have not been previously detected, four of which are outside the immediate  20 × 20  arcmin2  area centred on the Galactic Centre. Seven of the 17 identified filaments have morphological and spectral properties expected for pulsar wind nebulae (PWNe) with X-ray luminosities of  5 × 1032  to 1034 erg s−1 in the 2.0–10.0 keV band and photon indices in the range of  Γ= 1.1  to 1.9. In one feature, we suggest the strong neutral Fe Kα emission line to be a possible indicator for past activity of Sgr A*. For G359.942−0.03, a particular filament of interest, we propose the model of a ram pressure confined stellar wind bubble from a massive star to account for the morphology, spectral shape and 6.7 keV He-like Fe emission detected. We also present a piecewise spectral analysis on two features of interest, G0.13−0.11 and G359.89−0.08, to further examine their physical interpretations. This analysis favours the PWN scenario for these features.  相似文献   

19.
The huge size and uniformity of the Sloan Digital Sky Survey (SDSS) make possible an exacting test of current models of galaxy formation. We compare the predictions of the galform semi-analytical galaxy formation model for the luminosities, morphologies, colours and scalelengths of local galaxies. galform models the luminosity and size of the disc and bulge components of a galaxy, and so we can compute quantities which can be compared directly with SDSS observations, such as the Petrosian magnitude and the Sérsic index. We test the predictions of two published models set in the cold dark matter cosmology: the Baugh et al. model, which assumes a top-heavy initial mass function (IMF) in starbursts and superwind feedback, and the Bower et al. model, which uses active galactic nucleus feedback and a standard IMF. The Bower et al. model better reproduces the overall shape of the luminosity function, the morphology–luminosity relation and the colour bimodality observed in the SDSS data, but gives a poor match to the size–luminosity relation. The Baugh et al. model successfully predicts the size–luminosity relation for late-type galaxies. Both models fail to reproduce the sizes of bright early-type galaxies. These problems highlight the need to understand better both the role of feedback processes in determining galaxy sizes, in particular the treatment of the angular momentum of gas reheated by supernovae, and the sizes of the stellar spheroids formed by galaxy mergers and disc instabilities.  相似文献   

20.
ROSAT X-ray observations of 3CRR radio sources   总被引:1,自引:0,他引:1  
Over half the 3CRR sample of radio galaxies and quasars has been observed in X-rays with ROSAT pointed observations, and we present results from these observations, discussing many of the sources in detail. The improved spatial resolution of ROSAT over earlier missions allows a better separation of the nuclear and extended components of the X-ray emission. We investigate the relationship between nuclear X-ray and core radio luminosity, and show that our results support a model in which every radio galaxy and quasar has a beamed nuclear soft X-ray component directly related to the radio core. We report evidence for rich cluster environments around several powerful quasars. These X-ray environments are comparable to those of high-redshift radio galaxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号