首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The absolute visual magnitudes, MV , of A–M stars are based on calculated Hipparcos trigonometric parallaxes. The sample used consists of 30 986 unreddened and reddened A–M stars in luminosity classes Ia, Iab, Ib, II, III, IV and V. The colour excesses of the reddened stars were calculated using the mean colour indices, according to the SIMBAD data base and the intrinsic B − V values calibrated for the given spectral types and luminosity classes by Schmidt-Kaler. The values of the total-to-selective extinction,   RV = AV / E ( B − V )  , for all the reddened stars were calculated from previously published near-infrared photometric measurements. The calculated visual magnitudes, MV , of A–M stars compare with the earlier determinations of Schmidt-Kaler. The mean absolute magnitudes published by Schmidt-Kaler are generally brighter (except for the stars in luminosity classes V and IV) than those determined in this paper.  相似文献   

2.
Hipparcos satellite parallaxes for 22 metal-poor field horizontal branch stars with V 0<9 are used to derive their absolute magnitude. The weighted mean value is MV =+0.69±0.10 for an average metallicity of [Fe/H]=−1.41; a somewhat brighter average magnitude of MV =+0.60±0.12 for an average metallicity of [Fe/H]=−1.51 is obtained by eliminating HD 17072, which might be on the first ascent of the giant branch rather than on the horizontal branch. The present values agree with the determinations based on proper motions and application of the Baade–Wesselink method to field RR Lyraes; they are 0.1–0.2 mag fainter than those based on calibration of cluster distances obtained by using local subdwarfs and on alternative distance calibrators for the Large Magellanic Cloud (LMC). The possibility that there is a real difference between the luminosity of the horizontal branch for clusters and the field is briefly commented on.  相似文献   

3.
We present combined optical/near-infrared photometry ( BVIK ) for six open clusters – M35, M37, NGC 1817, NGC 2477, NGC 2420 and M67. The open clusters span an age range from 150 Myr to 4 Gyr and have metal abundances from  [Fe/H]=−0.27  to +0.09 dex. We have utilized these data to test the robustness of theoretical main sequences constructed by several groups as denoted by the following designations – Padova, Baraffe, Y2, Geneva and Siess. The comparisons of the models with the observations have been performed in the  [ MV , ( B − V )0], [ MV , ( V − I )0]  and  [ MV , ( V − K )0]  colour–magnitude diagrams as well as the distance-independent  [( V − K )0, ( B − V )0]  and  [( V − K )0, ( V − I )0]  two-colour diagrams. We conclude that none of the theoretical models reproduces the observational data in a consistent manner over the magnitude and colour range of the unevolved main sequence. In particular, there are significant zero-point and shape differences between the models and the observations. We speculate that the crux of the problem lies in the precise mismatch between theoretical and observational colour–temperature relations. These results underscore the importance of pursuing the study of stellar structure and stellar modelling with even greater intensity.  相似文献   

4.
This paper is based on 2MASS photometry (J H Ks magnitudes) of 1172 Be stars. The observed mean intrinsic colours have been derived with aid of two‐colour diagrams for Be stars of luminosity classes Ie‐IIe, IIIe and IVe‐Ve. The obtained results are the first determinations of their intrinsic colours in the astronomical literature. The smoothed infrared colours are compared with those obtained for “normal” B stars. Several two‐colour diagrams and plots of observed and smoothed intrinsic colour versus spectral type of luminosity classes Ie‐IIe, IIIe and IVe‐Ve are presented. Generally the determined infrared intrinsic colours of Be stars (VJ)0, (VH)0, and (VKs)o differ substantially from those of “normal” B stars. It is found that the intrinsic colours of B stars are generally bluer than Be stars of corresponding spectral type and luminosity class. The mean absolute visual magnitude Mv of 528 Be stars for luminosity classes Iae, Ibe‐Iabe, IIe, IIIe and IVe‐Ve is derived from HIPPARCOS parallaxes. The Mv calibration is compared with the existing ones. The Be stars are generally brighter than “normal” B stars of corresponding spectral types. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
In the first part of this work, the empirical correlation of stellar surface brightness F V with ( I c− K ) broad-band colour is investigated by using a sample of stars cooler than the Sun. A bilinear correlation is found to represent well the brightness of G, K and M giant stars. The change in slope occurs at ( I c− K )∼2.1 or at about the transition from K to M spectral types. The same relationship is also investigated for dwarf stars and found to be distinctly different from that of the giants. The dwarf star correlation differs by an average of −0.4 in ( I c− K ) or by a maximum in F V of ∼−0.1, positioning it below that of the giants, with both trends tending towards convergence for the hotter stars in our sample. The flux distribution derived from the F V −( I c− K ) relationship for the giant stars, together with that derived from an F V −( V − K ) relationship and the blackbody flux distribution, is then utilized to compute synthetic light V and colour ( V − R )c, ( V − I )c and ( V − K ) curves of cool spotted stars. We investigate the effects on the amplitudes of the curves by using these F V –colour relations and by assuming the effective gravity of the spots to be lower than the gravity of the unspotted photosphere. We find that the amplitudes produced by using the F V −( I c− K ) relationship are larger than those produced by the other two brightness correlations, meaning smaller and/or warmer spots.  相似文献   

6.
We present UBV ( RI )C photometry for 80 southern red and blue stars for use as additional standards. The data are tied to the Johnson UBV and Cousins ( RI )C systems and extend the range of the available stars for colour equation determination, especially in ( U − B ) for blue stars and ( V − R ) and ( V − I ) for red stars. Comparisons with published data are made and particularly good agreement is found with Bessell for the red (Gliese) stars.  相似文献   

7.
In this paper, by assuming the equilibrium temperatures of RRab Lyrae variables defined by Carney, Storm & Jones as correct we show that temperatures derived from ( B − V ) colour (mean colour over the pulsational cycle calculated on the magnitude scale) transformations by Bessel, Castelli & Plez are consistent with the Carney et al. equilibrium temperatures within a probable error of δ  log  T e =±0.003 . As a consequence, it is shown that the pulsational temperature scale temperature–period–blue amplitude [ T eff= f ( P , A B )] relation provided by De Santis, who studied the ( B − V ) colour of about 70 stars of Lub's sample, is a suitable relation, being reddening- and metallicity-free, to calculate equilibrium temperatures for RRab variables. This relation is independent of variable mass and luminosity within a large range of period-shift from the mean period–amplitude relation valid for Lub's sample of variables. On the contrary, it is also shown that a temperature–amplitude–metallicity relation is strictly dependent on the period–amplitude relation of the sample used for calibrating it: we prove that this means it is dependent on both the mass and luminosity variations of variables.  相似文献   

8.
We use accurate absolute proper motions and Two-Micron All-Sky Survey   Ks   -band apparent magnitudes for 364 Galactic RR Lyrae variables to determine the kinematical parameters of the Galactic RR Lyrae population and constrain the zero-point of the   Ks   -band period–luminosity relation for these stars via statistical parallax. We find the mean velocities of the halo- and thick-disc RR Lyrae populations in the solar neighbourhood to be  [ U 0(Halo), V 0(Halo), W 0(Halo)]= (−12 ± 10, −217 ± 9, −6 ± 6) km s−1  and  [ U 0(Disc), V 0(Disc), W 0(Disc)]= (−15 ± 7, −44 ± 7, −25 ± 5) km s−1  , respectively, and the corresponding components of the velocity-dispersion ellipsoids,  [σ VR (Halo), σ V θ(Halo), σ W (Halo)]= (167 ± 9, 86 ± 6, 78 ± 5) km s−1  and  [σ VR (Disc), σ V θ(Disc), σ W (Disc)]= (55 ± 7, 44 ± 6, 30 ± 4) km s−1  , respectively. The fraction of thick-disc stars is estimated at  0.25 ± 0.03  . The corrected infrared period–luminosity relation is     , implying a Large Magellanic Cloud (LMC) distance modulus of  18.27 ± 0.08  and a solar Galactocentric distance of  7.58 ± 0.40 kpc  . Our results suggest no or slightly prograde rotation for the population of halo RR Lyraes in the Milky Way.  相似文献   

9.
We present the luminosity function and measurements of the scalelengths, colours and radial distribution of dwarf galaxies in the Coma cluster down to R =24. Our survey area is 674 arcmin2; this is the deepest and most detailed survey covering such a large area.
Our measurements agree with those of most previous authors at bright and intermediate magnitudes. The new results are as follows.
(1) Galaxies in the Coma cluster have a luminosity function φ( L )∝ L α that is steep (α∼−1.7) for −15< MR <−11, and is shallower brighter than this. The curvature in the luminosity function at MR ∼−15 is statistically significant.
(2) The galaxies that contribute most strongly to the luminosity function at −14< MR <−12 have colours and scalelengths that are consistent with those of local dwarf spheroidal galaxies placed at the distance of Coma.
(3) These galaxies with −14< MR <−12 have a colour distribution that is very strongly peaked at B − R =1.3. This is suggestive of a substantial degree of homogeneity in their star formation histories and metallicities.
(4) These galaxies with −14< MR <−12 also appear to be more confined to the cluster core ( r ∼200 kpc) than the brighter galaxies. Alternatively, this observation may be explained in part or whole by the presence of an anomalously high number of background galaxies behind the cluster core. Velocity measurements of these galaxies would distinguish between these two possibilities.  相似文献   

10.
A fortran code which computes synthetic light and colour curves of active, spotted stars has been developed. The main feature of this code is that it can simultaneously model the V light curve and the ( V − R )c, ( V − I )c, ( V − K ) colour data. It also uses new effective temperature–colour and Barnes–Evans-like calibrations, temperature and gravity-dependent limb darkening coefficients and different effective surface gravities for the spotted and unspotted photosphere. The code allows for two-component spots, i.e. spots with umbral and penumbral components. Various problematic spot configurations were investigated and we conclude that, in order to be able to differentiate spots with various thermal structures (umbrae, penumbrae, faculae) or polar spots from equatorial bands, the modelling of the infrared colours, especially ( V − I )c and ( V − K ), is needed.  相似文献   

11.
The central stars of highly evolved planetary nebulae (PNe) are expected to have closely similar absolute visual magnitudes MV . This enables us to determine approximate distances to these sources where one knows their central star visual magnitudes, and levels of extinction. We find that such an analysis implies values of D which are similar to those determined by Phillips; Cahn, Kaler & Stanghellin; Acker, and Daub. However, our distances are very much smaller than those of Zhang; Bensby & Lundstrom, and van de Steene & Zijlstra. The reasons for these differences are discussed, and can be traced to errors in the assumed relation between brightness temperature and radius.
Finally, we determine that the binary companions of such stars can be no brighter than   MV ∼ 6 mag  , implying a spectral type of K0 or later in the case of main-sequence stars.  相似文献   

12.
The luminosity function for contact binary stars of the W UMa type is evaluated on the basis of the All Sky Automated Survey (ASAS) photometric project covering all stars south of  δ=+ 28°  within a magnitude range  8 < V < 13  . Lack of colour indices enforced a limitation to 3374 systems with   P < 0.562 d  (i.e. 73 per cent of all systems with   P < 1 d  ) where a simplified MV (log  P ) calibration could be used. The spatial density relative to the main-sequence FGK stars of 0.2 per cent, as established previously from the Hipparcos sample to   V = 7.5  , is confirmed. While the numbers of contact binaries in the ASAS are large and thus the statistical uncertainties small, derivation of the luminosity function required a correction for missed systems with small amplitudes and with orbital periods longer than 0.562 d; the correction, by a factor of 3, carries an uncertainty of about 30 per cent.  相似文献   

13.
The absolute visual magnitudes of 457 Be stars are determined from Hipparcos parallaxes, subsequently the mean absolute visual magnitudes of Be stars for luminosity classes III, IV and V are obtained. The new Mv calibration is compared with existing calibrations. It is found that Be stars are generally brighter than B stars of the corresponding spectral types, and that there is no direct correlation between absolute magnitudes and the stellar rotational velocity, these results are in agreement with some earlier results. A new and interesting result is that there is no direct correlation between near infrared excess and absolute visual magnitudes for Be stars. Moreover, possible biases, such as the Malmquist bias and the Lutz–Kelker bias, are also discussed.  相似文献   

14.
Distances to nine dark globules are determined by a method using optical ( VRI ) and near-infrared (near-IR) ( JHK ) photometry of stars projected towards the field containing the globules. In this method, we compute intrinsic colour indices of stars projected towards the direction of the globule by dereddening the observed colour indices using various trial values of extinction   A V   and a standard extinction law. These computed intrinsic colour indices for each star are then compared with the intrinsic colour indices of normal main-sequence stars and a spectral type is assigned to the star for which the computed colour indices best match with the standard intrinsic colour indices. Distances ( d ) to the stars are determined using the   A V   and absolute magnitude  ( MV )  corresponding to the spectral types thus obtained. A distance versus extinction plot is made and the distance at which   A V   undergoes a sharp rise is taken to be the distance to the globule. All the clouds studied in this work are in the distance range 160–400 pc. The estimated distances to dark globules LDN 544, LDN 549, LDN 567, LDN 543, LDN 1113, LDN 1031, LDN 1225, LDN 1252 and LDN 1257 are  180 ± 35, 200 ± 40, 180 ± 35, 160 ± 30, 350 ± 70, 200 ± 40, 400 ± 80, 250 ± 50  and 250 ± 50 pc, respectively. Using the distances determined, we have estimated the masses of the globules and the far-IR luminosity of the IRAS sources associated with them. The mass of the clouds studied are in the range  10–200 M  .  相似文献   

15.
New photometry of RRab and RRc stars in ω Centauri is used to calibrate their absolute magnitudes MV as a function of (a) metallicity and (b) the Fourier parameters of light curves in the V band. The zero point of both calibrations relies on the distance modulus to the cluster derived earlier by the Cluster AgeS Experiment (CASE) project based on observations of the detached eclipsing binary OGLE GC17. For RRab variables, we obtained a relation of   MV = (0.26 ± 0.08)[ Fe/H ] + (0.91 ± 0.13)  . A dereddened distance modulus to the Large Magellanic Cloud (LMC) based on that formula is  μ0= 18.56 ± 0.14 mag  . The second calibration of MV , which is based on Fourier coefficients of decomposed light curves, results in the LMC distance of  μ0= 18.51 ± 0.07 mag  .  相似文献   

16.
As Be stars are restricted to luminosity classes III‐V, but early B‐type stars are believed to evolve into supergiants, it is to be expected that the Be phenomenon disappears at some point in the evolution of a moderately massive star, before it reaches the supergiant phase. As a first stage in an attempt to determine the physical reasons of this cessation, a search of the literature has provided a number of candidates to be Be stars with luminosity classes Ib or II. Spectroscopy has been obtained for candidates in a number of open clusters and associations, as well as several other bright stars in those clusters. Among the objects observed, HD 207329 is the best candidate to be a high‐luminosity Be star, as it appears like a fast‐rotating supergiant with double‐peaked emission lines. The lines of HD 229059, in Berkeley 87, also appear morphologically similar to those of Be stars, but there are reasons to suspect that this object is an interacting binary. At slightly lower luminosities, LS I +56°92 (B4 II) and HD 333452 (O9 II), also appear as intrinsically luminous Be stars. Two Be stars in NGC 6913, HD 229221 and HD 229239, appear to have rather higher intrinsic magnitudes than their spectral type (B0.2 III in both cases) would indicate, being as luminous as luminosity class II objects in the same cluster. HD 344863, in NGC 6823, is also a rather early Be star of moderately high luminosity. The search shows that, though high‐luminosity Be stars do exist, they are scarce and, perhaps surprisingly, tend to have early spectral types. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We present angular diameters for 42 Luminosity Class (LC) I stars and 32 LC II stars that have been interferometrically determined with the Palomar Testbed Interferometer. Derived values of radius and effective temperature are established for these objects, and an empirical calibration of these parameters for supergiants will be presented as a function of spectral type and colours. For the effective temperature versus  ( V − K )0  colour, we find an empirical calibration with a median deviation of  Δ T = 70 K  in the range of  0.7 < ( V − K )0 < 5.1  for LC I stars; for LC II, the median deviation is  Δ T = 120 K  from  0.4 < ( V − K )0 < 4.3  . Effective temperature as a function of spectral type is also calibrated from these data, but shows significantly more scatter than the T EFF versus  ( V − K )0  relationship. No deviation of T EFF versus spectral type is seen for these high-luminosity objects relative to LC II giants. Directly determined diameters range up to  400 R  , though are limited by poor distance determinations, which dominate the error estimates. These temperature and radii measures reflect a direct calibration of these parameters for supergiants from empirical means.  相似文献   

18.
I explore the consequences of making the RR Lyrae and clump giant distance scales consistent in the solar neighbourhood, Galactic bulge and Large Magellanic Cloud (LMC). I employ two major assumptions: (i) that the absolute magnitude–metallicity, M V (RR)–[Fe/H], relation for RR Lyrae stars is universal, and (ii) that absolute I magnitudes of clump giants, M I (RC), in Baade's Window are known (e.g. can be inferred from the local Hipparcos -based calibration or theoretical modelling). A comparison between the solar neighbourhood and Baade's Window sets M V (RR) at [Fe/H]=−1.6 in the range (0.59±0.05, 0.70±0.05), somewhat brighter than the statistical parallax solution. More luminous RR Lyrae stars imply younger globular clusters, which would be in better agreement with the conclusions from the currently favoured stellar evolution and cosmological models. A comparison between Baade's Window and the LMC sets M LMC(RC) I in the range (−0.33±0.09,−0.53±0.09). The distance modulus to the LMC is μ LMC∈(18.24±0.08,18.44±0.07). Unlike M LMC(RC) I , this range in μ LMC does not depend on the adopted value of the dereddened LMC clump magnitude, I LMC(RC)0. I argue that the currently available information is insufficient to select the correct distance scale with high confidence.  相似文献   

19.
Optical spectroscopy of CPD −59° 2635, one of the O-type stars in the open cluster Trumpler 16 in the Carina Nebula, reveals this star to be a double-lined binary system. We have obtained the first radial velocity orbit for this system, consisting of a circular solution with a period of 2.2999 d and semi-amplitudes of 208 and 273 km s−1. This results in minimum masses of 15 and 11 M for the binary components of CPD −59° 2635, which we classified as O8V and O9.5V, although spectral type variations of the order of 1 subclass, which we identify as the Struve–Sahade effect , seem to be present in both components. From ROSAT HRI observations of CPD −59° 2635 we determine a luminosity ratio log( L x/ L bol)≈−7 , which is similar to that observed for other O-type stars in the Carina Nebula region. No evidence of light variations is present in the available optical or X-ray data sets.  相似文献   

20.
We present a new luminosity–colour relation based on trigonometric parallaxes for thin-disc main-sequence stars in Sloan Digital Sky Survey (SDSS) photometry. We matched stars from the newly reduced Hipparcos catalogue with the ones taken from Two-Micron All-Sky Survey (2MASS) All-Sky Catalogue of Point Sources, and applied a series of constraints, i.e. relative parallax errors  (σπ/π≤ 0.05)  , metallicity  (−0.30 ≤[M/H]≤ 0.20 dex)  , age  (0 ≤ t ≤ 10 Gyr)  and surface gravity  (log  g > 4)  , and obtained a sample of thin-disc main-sequence stars. Then, we used our previous transformation equations ( Bilir et al. 2008a ) between SDSS and 2MASS photometries and calibrated the   Mg   absolute magnitudes to the  ( g − r )0  and  ( r − i )0  colours. The transformation formulae between 2MASS and SDSS photometries along with the absolute magnitude calibration provide space densities for bright stars which saturate the SDSS magnitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号