首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了满足大行星卫星的高精度CCD位置观测与运动理论研究工作的需要 ,采用天王星 5颗主要卫星摄动理论模型 (Gust86 )作为核心 ,设计了一个天王星视位置可视化软件。该软件具有卫星证认 ,最佳观测时段选取 ,精确模拟卫星视运动和实时引导CCD精密定位观测等功能。  相似文献   

2.
4颗卫星情况的几何优化法修正   总被引:6,自引:0,他引:6  
在GPS定位与导航中,用户可以通过选择至少4颗可见卫星的观测,得到测站位置和站钟差信息,卫星相对于测站的几何关系直接影响到定位和导航的精度,考虑用4颗卫星进行定位,在当前有一定的现实意义,在KihaLra等人工作的基础上对四面体的性质进行了深入讨论,推导了4颗可见卫星构成四面体体积的计算公式,实例分析证明该计算公式更合理、更精确。  相似文献   

3.
卫星定位中,当可视卫星数目多于4颗时常采用加权最小二乘(Web Login Server,WLS)算法,对各卫星解算权重进行重新评估而获得最优解。然而由于受到多重因素的影响,权矩阵W的构造与确定一直是各类加权算法中的重点和难点。从线性测量方程组出发,通过研究迭代解算过程中用户等效伪距测量误差对坐标位置误差的传递与放大规律,提出了一种新的加权最小二乘解算方法,及其权矩阵的具体构造与实现方法,从而对各未知数进行分步加权与分离解算。通过全球定位系统(Global Positioning System,GPS)实测实验,对方法的可行性和精度水平进行了分析与验证。结果表明,使用该分步加权方法进行定位,解算结果准确度更高、稳定性更好。  相似文献   

4.
天王星卫星CCD观测的初步分析   总被引:2,自引:1,他引:1  
1995 年8 月在上海天文台利用安装在1 .56 米望远镜上的CCD 探测器对天王星五颗主要卫星进行了定位试观测。将观测所得的位置资料与其理论值做了比较。结果表明:CCD观测的位置精度优于照相观测的结果。这些资料对于卫星轨道的研究是有价值的。  相似文献   

5.
利用新发表的高精度、高密度天体测量星表UCAC2,对天王星的五颗主要卫星的CCD观测图像重新进行量测,采用不同方法作定标归算,并使用两种理论模型(GUST86和GUST06模型)计算卫星的理论位置。对不同方法所得到的卫星位置的O-C结果的分析和比较表明,本文获得的卫星位置精度,除天卫五(Miranda)有显著提高,其他4颗卫星的位置精度基本相同。本文中天卫一和天卫三的结果与"亮卫星定标法"的结果在精度上相当,天卫二的位置精度与其他天王星卫星的位置精度具有较好的一致性,这从另一方面证明了我们的"亮卫星定标法"的可靠性。此外我们还获得了天卫四的位置与精度。  相似文献   

6.
北斗二号(Bei Dou Navigation Satellite System-2, BDS-2)卫星播发以B3频点为基准的卫星钟差参数,并播发B1和B2频点相对于B3频点的群延迟(time group delay, TGD)参数。以差分码偏差(differential code bias, DCB)参数为基准,计算BDS-2群延迟参数的精度。在计算过程中,发现在2017年年积日202 d以前,各颗卫星TGD1参数精度较差,与DCB1参数互差在2~4 ns之间,TGD2与DCB2的互差约为0.5 ns。在2017年年积日202―203 d处,所有卫星群延迟参数均发生明显跳变,该跳变主要是因参与群延迟解算的北斗系统的接收机不再采用抗多径算法所致。跳变后,群延迟参数与MGEX (Multi-GNSS Experiment)公布的差分码偏差参数的差值小于0.5 ns,与GPS卫星播发的群延迟参数精度接近。进一步利用实测数据计算了群延迟参数改正精度对用户导航定位精度的影响。结果表明,使用跳变前的群延迟参数,单频定位精度为2.078 m,双频定位N方向精度为1.451 m,E方向精度为1.648 m,U方向精度为3.467 m;使用跳变后的群延迟参数,单频定位精度为1.968 m,双频定位N方向精度为1.361 m,E方向精度为0.998 m,U方向精度为2.789 m,在双频定位的N, E, U方向,双频定位精度分别提升6.2%, 39.4%, 19.5%。  相似文献   

7.
介绍了 2 0 0 3年度上海天文台卫星激光测距观测概况 ,同时介绍了我国第一颗带激光反射器的航天器—神舟四号轨道舱的激光观测和双波长卫星激光测距实验。  相似文献   

8.
在地面望远镜观测土星主要卫星的精确定位中,目前普遍采用CCD成像技术。为了测量视场中暗卫星的位置,常采用4颗主要卫星(土卫三-土卫六)进行定标。鉴于技术的进步,目前CCD视场正在逐步增加,如何精确定标图像值得研究。利用2010年1月20日在云南天文台1 m望远镜上观测的不同取向的105幅CCD图像进行了试验研究。采用了美国喷气推进实验室土星主要卫星历表和美国海军天文台的UCAC4恒星星表进行计算,相对于不同的参考对象进行定标。结果表明,采用4颗主要卫星进行定标并测量离卫星较近的观测对象时具有较好的测量准确度和内部精度。测量离定标星较远的卫星时,这种定标方法具有较大的不确定性。采用6颗主要卫星(土卫三-土卫八)进行定标,所有卫星的测量结果具有更好的外部和内部符合。即便如此,采用四常数模型和六常数模型定标的结果都不是令人满意,这揭示CCD视场存在明显的扭曲效应。如果采用视场中的恒星定标,卫星的外部符合和内部精度明显变差,这说明UCAC4恒星参考星表也不是理想的定标用参考星表。  相似文献   

9.
对20颗依巴谷(Hipparcos)卫星所观测的碳星作了近红外JHK测光,由近红外观测结果估算了其在K波段的热改正BCK和视热星等mbpl以及有效温度Te,结合依巴谷卫星所得视差,得到其中一些星的绝对热星等Mbol。  相似文献   

10.
使用云南天文台1 m望远镜连续4个夜晚观测得到的248幅CCD图像对天王星5颗主要卫星(Ariel、Umbriel、Titania、Oberon和Miranda)进行了精确的位置测量.在位置归算过程中,采用了最新发布的Gaia DR1(Data Release 1)作为参考星表,并将卫星的观测值和理论计算值作比较.卫星的理论位置参考JPL(Jet Propulsion Laboratory)历表(其中天王星理论位置参考了DE431行星历表).结果显示:5颗卫星在赤经和赤纬方向的O-C平均值(观测值-理论值)均不超过0.027′′(天卫一Ariel:0.027′′和-0.007′′;天卫二Umbriel:0.024′′和-0.003′′;天卫三Titania:0.021′′和0.020′′;天卫四Oberon:0.024′′和-0.001′′;天卫五Miranda:0.021′′和0.001′′).前4颗卫星两个方向的测量精度均好于0.015′′,Miranda的精度可达到0.030′′.  相似文献   

11.
针对地基卫星测控系统(Tracking Telemetry and Command, TT&C)系统对地球静止轨道(Geostation-\lk ary Earth Orbit, GEO)卫星在空间和时间覆盖上的局限性, 提出小倾角低地球轨道(Low Earth Orbit, LEO)多星组网天基平台对GEO卫星进行跟踪定轨的方法. 根据空间环境和光学可视条件对仿真数据进行筛选以模拟真实的观测场景, 利用光学测角数据, 使用数值方法对GEO卫星的轨道进行确定. 结果与参考轨道进行重叠对比, 在平台轨道精度5 m、测量精度5rq\rq、 定轨弧长12 h的情况下, 两颗LEO卫星对GEO卫星进行跟踪定轨的精度可达到千米量级, 4颗LEO卫星对GEO目标进行跟踪定轨的精度可达到百米量级. 随着LEO组网卫星数量的增加, 定轨精度得到了较大的提高.  相似文献   

12.
GIM在LEO卫星单频GPS定轨中的应用   总被引:1,自引:0,他引:1  
彭冬菊  吴斌 《天文学报》2012,53(1):36-50
电离层延迟误差是单频GPS(Global Positioning System)数据最主要的误差源,为提高基于单频GPS数据的LEO(Low Earth Orbiting)卫星定轨精度,必须消除/减弱GPS观测数据中电离层延迟影响.研究了全球电离层模型GIM(Global IonosphericMaps)在基于单频GPS伪距数据的低轨卫星运动学和动力学定轨中的应用,并通过估算电离层尺度因子的方法消除C/A码伪距观测量中电离层延迟影响.由于LEO卫星星载GPS信号受电离层延迟影响与卫星轨道高度相关,选取了轨道高度在300~800 km的CHAMP(CHAllenging Mini-satellite Payload)、GRACE(Gravity Recovery AndClimate Experiment)、TerraSAR-X及SAC-C等LEO卫星C/A码伪距观测量作为试算数据.CHAMP等卫星实测数据计算结果表明:以JPL(Jet Propulsion Laboratory)发布的GIM模型作为背景模型,通过电离层比例因子法能很好地消除C/A码伪距观测量中电离层延迟影响,提高LEO卫星运动学和动力学定轨精度,其中,CHAMP卫星轨道最低,受电离层延迟影响最严重,定轨精度提高最显著,分别为55.6%和47.6%;SAC-C卫星轨道高度最高,受电离层延迟影响最小,相应的定轨精度提高幅度也最低,分别为47.8%和38.2%.  相似文献   

13.
木卫六是木星最大的一颗不规则天然卫星,为了获得它的高精度观测位置,天体测量归算过程中各方面都需要考虑,其中特别重要的是参考星表的选择。应用最新公布的星表Gaia Data Release 1(Gaia DR1),同时采用UCAC4星表进行比较,对2015年云南天文台获得的185个木卫六的观测资料进行处理和归算,结果显示,采用Gaia DR1星表的木卫六的位置测量精度在赤经和赤纬两个方向都约为0.02″,比采用UCAC4的结果有显著提升。  相似文献   

14.
根据伪码测距技术和卫星通讯的特点,针对我国已发射的或将要发射的以及我国目前租用的C波段和Ku波段卫星,设计了用高精密传输终端(或MITREX)进行伪码测距时卫星地面站的参数,并估算出了伪码测距精度。  相似文献   

15.
介绍了差分VLBI技术确定空间飞行器位置的原理。在上海、乌鲁木齐和昆明站开展了对地球同步卫星的首次国内差分VLBI观测 ,实验中选择 3颗角距小于 15°的ICRF射电源作为参考源 ,克服了卫星观测的特殊性带来的困难 ,成功地获得了卫星信号的干涉条纹。基于条纹拟合的结果和系统差分析 ,估计双差单向测距的总误差约为 4 1cm ,双差单向测速的总误差约为 0 .14 8mm/s,相当于在地球同步轨道上 8m的位置误差和 2 .8mm/s的速度误差  相似文献   

16.
利用国内VLBI网跟踪大椭圆轨道卫星   总被引:1,自引:0,他引:1  
2004年7月,昆明VLBI站经过改造,由上海、乌鲁木齐和昆明站组成的中国VLBI网(CVN)采用统一的MARK4格式编制器和CVN硬盘记录系统,对大椭圆轨道卫星“探测1号”的2圈轨道的共同可视弧段进行了跟踪观测.软件相关处理程序已成功地用于检测卫星遥测信号的干涉条纹和数据相关处理.采用基于条纹幅度的加权最小二乘条纹拟合方法,获得了卫星VLBI观测量及其精度估计,完成了卫星VLBI观测量的3基线闭合误差检验.应用河外射电源校准方法和多频点相位校正信号提取方法,进行了台站钟差和仪器延迟等系统误差改正.经系统差改正后的卫星VLBI观测量序列已用于“探测1号”卫星的轨道确定.  相似文献   

17.
天王星卫星的星历表计算   总被引:2,自引:2,他引:0  
根据天王星卫星的运动理论模型,建立了一套5颗主要卫星的星历表计算和误差分析程序。对部分高精度卫星观测位置资料进行的O-C计算和分析表明了计算程序的正确性和实用性。  相似文献   

18.
根据天王星卫星的运动理论模型(GUST86),建立了一套5颗主要卫星的星历表计算和误差分析程序。对部分高精度卫星观测位置资料进行的O-C计算和分析表明了计算程序的正确性和实用性。  相似文献   

19.
为了研究低轨通信卫星多普勒定位性能,首先分析了低轨卫星的对地覆盖特性、信号传输特性以及多普勒频移特性,推导了多普勒定位原理和方法,提出了适用于多普勒定位的精度因子.基于已在轨的铱星和全球星系统,解算了全球范围可见卫星数和定位精度因子,并对相应测站进行了定位仿真实验和误差分析.结果表明:对于铱星和全球星系统,随着纬度降低,卫星可见数减小,多普勒几何精度因子变大;多普勒定位结果精度同时受到频率测量精度、卫星位置误差以及卫星速度误差影响,当卫星位置误差小于10 m、卫星速度误差小于0.1 km·s-1时,对定位结果影响不大,此时频率测量精度成为影响定位精度的决定性因素,且当频率测量精度为0.01 Hz时,定位精度可达1.18 m.  相似文献   

20.
1995年天王星卫星位置观测的重新归算   总被引:4,自引:3,他引:1  
研究改进了对自然卫星CCD图像进行定位量测处理的方法。经对天王星主要卫星CCD观测位置图像的计算处理表明位置精度有了明显提高 ,O -C的标准误差 (RMS)平均为 0 .0 7″。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号