首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 675 毫秒
1.
2.
We use non-simultaneous Ginga ASCA ROSAT observations to investigate the complex X-ray spectrum of the Seyfert 2 galaxy Mrk 3. We find that the composite spectrum can be well described in terms of a heavily cut-off hard X-ray continuum, iron Kα emission and a soft X-ray excess, with spectral variability confined to changes in the continuum normalization and the flux in the iron line. Previous studies have suggested that the power-law continuum in Mrk 3 is unusually hard. We obtain a canonical value for the energy index of the continuum (i.e., α ≈ 0.7) when a warm absorber (responsible for an absorption edge observed near 8 keV) is included in the spectral model. Alternatively, the inclusion of a reflection component yields a comparable power-law index. The soft-excess flux cannot be modelled solely in terms of pure electron scattering of the underlying power-law continuum. However, a better fit to the spectral data is obtained if we include the effects of both emission and absorption in a partially photoionized scattering medium. In particular, the spectral feature prominent at ∼ 0.9 keV could represent O VIII recombination radiation produced in a hot photoionized medium. We discuss our results in the context of other recent studies of the soft X-ray spectra of Seyfert 2 galaxies.  相似文献   

3.
We report the first detection of a sharp spectral feature in a narrow-line Seyfert 1 galaxy. Using XMM-Newton we have observed 1H     and find a drop in flux by a factor of more than 2 at a rest-frame energy of ∼ 7 keV without any detectable narrow Fe K α line emission. The energy of this feature suggests a connection with the neutral iron K photoelectric edge, but the lack of any obvious absorption in the spectrum at lower energies makes the interpretation challenging. We explore two alternative explanations for this unusual spectral feature: (i) partial-covering absorption by clouds of neutral material; and (ii) ionized disc reflection with lines and edges from different ionization stages of iron blurred together by relativistic effects. We note that both models require an iron overabundance to explain the depth of the feature. The X-ray light curve shows strong and rapid variability, changing by a factor of 4 during the observation. The source displays modest spectral variability which is uncorrelated with flux.  相似文献   

4.
We present simultaneous ASCA and RXTE observations of Ark 564, the brightest known 'narrow-line' Seyfert 1 in the 2–10 keV band. The measured X-ray spectrum is dominated by a steep (Γ≈2.7) power-law continuum extending to at least 20 keV, with imprinted Fe K-line and edge features and an additional 'soft excess' below ∼1.5 keV. The energy of the iron K-edge indicates the presence of highly ionized material, which we identify in terms of reflection from a strongly irradiated accretion disc. The high reflectivity of this putative disc, together with its strong intrinsic O  viii Ly α and O  viii recombination emission, can also explain much of the observed soft excess flux. Furthermore, the same spectral model also provides a reasonable match to the very steep 0.1–2 keV spectrum deduced from ROSAT data. The source is much more rapidly variable than 'normal' Seyfert 1s of comparable luminosity, increasing by a factor of ∼50 per cent in 1.6 h, with no measurable lag between the 0.5–2 keV and 3–12 keV bands, consistent with much of the soft excess flux arising from reprocessing of the primary power-law component in the inner region of the accretion disc. We note, finally, that if the unusually steep power-law component is a result of Compton cooling of a disc corona by an intense soft photon flux, then the implication is that the bulk of these soft photons lie in the unobserved extreme ultraviolet.  相似文献   

5.
We report on an analysis in the  3–10 keV  X-ray band of the long 1999 ASCA observation of MCG–6-30-15. The time-averaged broad iron K line is well described by disc emission near a Schwarzschild black hole, confirming the results of earlier analyses on the ASCA 1994 and 1997 data. The time-resolved iron-line profile is remarkably stable over a factor of 3 change in source flux, and the line and continuum fluxes are uncorrelated. Detailed fits to the variable iron-line profile suggest that the active region (parametrized by the best-fitting inner and outer radii of the accretion disc) responsible for iron-line emission actually narrows with increasing flux to a region around  4–5 r g  . In contrast with the iron line, the power-law continuum exhibits significant variability during the 1999 observation. Time-resolved spectral analysis reveals a new feature in the well-known photon index (Γ) versus flux correlation: Γ appears to approach a limiting value of  Γ∼2.1  at high flux. Two models are proposed to explain both the new feature in the Γ versus flux correlation and the uncorrelated iron-line flux: a phenomenological two power-law model, and the recently proposed 'thundercloud' model of Merloni & Fabian . Both models are capable of reproducing the data well, but because they are poorly constrained by the observed Γ versus flux relation, they cannot at present be tested meaningfully by the data. The various implications and the physical interpretation of these models are discussed.  相似文献   

6.
We report on a joint ASCA and RXTE observation spanning an ∼400 ks time interval of the bright Seyfert 1 galaxy MCG–6-30-15. The data clearly confirm the presence of a broad skewed iron line ( W ∼266 eV) and Compton reflection continuum at higher energies reported in our previous paper. We also investigate whether the gravitational and Doppler effects, which affect the iron line, may also be manifest in the reflected continuum. The uniqueness of this data set is underlined by the extremely good statistics that we obtain from the approximately four million photons that make up the 2–20 keV RXTE PCA spectrum alone. This, coupled with the high energy coverage of HEXTE and the spectral resolution of ASCA in the iron line regime, has allowed us to constrain the relationship between abundance and reflection fraction for the first time at the 99 per cent confidence level. The reflection fraction is entirely consistent with a flat disc, i.e. the cold material subtends 2π sr at the source, to an accuracy of 20 per cent. Monte Carlo simulations show that the observed strong iron line intensity is explained by an overabundance of iron by a factor of ∼2 and an underabundance of the lower- Z elements by a similar factor. By considering non-standard abundances, a clear and consistent picture can be made in which both the iron line and reflection continuum come from the same material such as, e.g., an accretion disc.  相似文献   

7.
We present a flux variability study of simultaneous RXTE and EUVE observations of the highly variable Seyfert galaxy NGC 4051. We find a strong correlation between variability in the EUV and medium-energy X-ray bands, indicating that both are sampling the same power-law continuum. The lag between the two bands is less than 20 ks and, depending on model assumptions, may be <1 ks. We examine the consequences of such a small lag in the context of simple Comptonization models for the production of the power-law continuum. A lag of <1 ks implies that the size of the Comptonizing region is less than 20 Schwarzschild radii for a black hole of mass >106 M.  相似文献   

8.
We present XMM-Newton observations of Mrk 359, the first narrow-line Seyfert 1 galaxy (NLS1) discovered. Even among NLS1s, Mrk 359 is an extreme case with extraordinarily narrow optical emission lines. The XMM-Newton data show that Mrk 359 has a significant soft X-ray excess which displays only weak absorption and emission features. The     continuum, including reflection, is flatter than that of the typical NLS1, with     . A strong emission line of equivalent width ≈200 eV is also observed, centred near 6.4 keV. We fit this emission with two line components of approximately equal strength: a broad iron line from an accretion disc and a narrow, unresolved core. The unresolved line core has an equivalent width of ≈120 eV and is consistent with fluorescence from neutral iron in distant reprocessing gas, possibly in the form of a 'molecular torus'. Comparison of the narrow-line strengths in Mrk 359 and other low–moderate luminosity Seyfert 1 galaxies with those in QSOs suggests that the solid angle subtended by the distant reprocessing gas decreases with increasing active galactic nucleus luminosity.  相似文献   

9.
We investigate the X-ray spectra of the type 2 Seyfert galaxies NGC 7172 and ESO 103-G35, using BeppoSAX observations, separated by approximately one year. We find that the X-ray spectra of both NGC 7172 and ESO 103-G35 can be well fitted using a power-law model with an Fe K α emission line at 6.4 keV. We did not find any statistically significant evidence for the existence of a reflection component in the X-ray spectra of these two galaxies. The continuum flux has decreased by a factor of approximately 2 during this period, in both objects. However, the spectral index as well as the absorption column have remained constant. We find weak evidence for the decrease of the normalization of the Fe K α emission line in a similar manner to the continuum in NGC 7172. We also report tentative evidence for a broad Fe K α line in agreement with previous ASCA observations. In contrast, in the case of ESO 103-G35 the line flux does not change while its width remains unresolved.  相似文献   

10.
We report on a 50-ks observation of the bright Seyfert 1 galaxy MCG–6-30-15 with the Rossi X-ray Timing Explorer . The data clearly show the broad fluorescent iron line (equivalent width ∼ 250 eV) and the Compton reflection continuum at higher energies. A comparison of the iron line and the reflection continuum has enabled us to constrain the reflective fraction and the elemental abundances in the accretion disc. Temporal studies provide evidence that spectral variability is a result of changes in both the amount of reflection seen and the properties of the primary X-ray source itself.  相似文献   

11.
We present a series of RXTE observations of the nearby obscured Seyfert galaxies ESO103-G35, IC5063, NGC 4507 and NGC 7172. The period of monitoring ranges from seven days for NGC 7172 up to about seven months for ESO103-G035. The spectra of all galaxies fit well with a highly obscured ( N H>1023 cm−2) power-law and an Fe line at 6.4 keV. We find strong evidence for the presence of a reflection component in ESO103-G35 and NGC 4507. The observed flux presents strong variability on day time-scales in all objects. Spectral variability is also detected in the sense that the spectrum steepens with increasing flux similar to the behaviour witnessed in some Seyfert 1 galaxies.  相似文献   

12.
We present analyses of the ASCA X-ray spectra of two Seyfert galaxies, Tololo 0109383 and ESO 138G1. In both cases, spectral fitting reveals two statistically acceptable continuum models: Compton reflection and partial covering. Both spectra have strong iron K lines, with equivalent widths greater than 1.5 keV. These large equivalent widths are suggestive of heavier obscuration than that directly indicated by the partial-covering models (  21023 cm-2),  with the actual column densities being 'Compton-thick' (i.e.   N H1.51024 cm-2).  We use the hard X-ray/[O  iii ] flux correlation for Seyferts and data from the literature to provide additional support for this hypothesis. Since Tololo 0109383 is known to have optical type 1 characteristics such as broad Balmer line components and Fe  ii emission, this result marks it as a notable object.  相似文献   

13.
We report on simultaneous ASCA and ROSAT observations of the Seyfert galaxy NGC 5548 made during the ASCA Performance Verification phase. Spectral features due to a warm absorber and reflection are clearly seen in the X-ray spectra. We find that the continuum spectral shape differs between the ASCA and ROSAT data sets. The photon-index obtained from the ROSAT PSPC exceeds that from the ASCA SIS ΔΓ≈0.4. The discrepancy is clear even in the 0.5–2 keV energy band over which both detectors are sensitive. The spectra cannot be made consistent by choosing a more complex model. The problem likely lies in the response curve (estimated effective area) of one, or both, detectors. There may be important consequences for a wide range of published results.  相似文献   

14.
Initial results on the iron K‐shell line and reflection component in several AGN observed as part of the Suzaku Guaranteed Time program are reviewed. This paper discusses a small sample of Compton‐thin Seyferts observed to date with Suzaku; namely MCG‐5‐23‐16, MCG‐6‐30‐15, NGC4051, NGC3516, NGC2110, 3C 120 and NGC2992. The broad iron Kα emission line appears to be present in all but one of these Seyfert galaxies, while the narrow core of the line from distant matter is ubiquitous in all the observations. The iron line in MCG‐6‐30‐15 shows the most extreme relativistic blurring of all the objects, the red‐wing of the line requires the inner accretion disk to extend inwards to within 2.2R g of the black hole, in agreement with the XMM‐Newton observations. Strong excess emission in the Hard X‐ray Detector (HXD) above 10 keV is observed in many of these Seyfert galaxies, consistent with the presence of a reflection component from reprocessing in Compton‐thick matter (e.g. the accretion disk). Only one Seyfert galaxy (NGC 2110) shows neither a broad iron line nor a reflection component. The spectral variability of MCG‐6‐30‐15, MCG‐5‐23‐16 and NGC 4051 is also discussed. In all 3 cases, the spectra appear harder when the source is fainter, while there is little variability of the iron line or reflection component with source flux. This agrees with a simple two component spectral model, whereby the variable emission is the primary power‐law, while the iron line and reflection component remain relatively constant. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Results of ASCA and ROSAT observations of the Seyfert 1 galaxy RX J0437.4−4711 are presented. The X-ray continuum spectrum can be described by the sum of a power law with photon index 2.15 ± 0.04 and a soft emission component characterized by a blackbody with temperature 29 ± 2 eV. The total luminosity of the soft component is larger than that of the power-law component if the power law is cut off around a few hundred keV. A weak absorption edge with τ = 0.26 ± 0.13 at the rest-frame energy of E  = 0.83 ± 0.05 keV and an Fe Kα line with EW = 430 ± 220 eV at an energy E  = 6.47 ± 0.15 keV are also detected. The X-ray flux showed a 47 per cent increase between two ASCA observations 4 months apart, but no spectral variability was seen. We argue that reprocessing of the hard X-ray emission cannot produce all the soft X-ray emission, since the total luminosity of the soft component is larger than that of the integrated power-law component. Similarities with some stellar black hole candidates are briefly discussed.  相似文献   

16.
We present an X-ray spectroscopic study of the bright Compton-thick Seyfert 2 galaxies NGC 1068 and the Circinus Galaxy, performed with BeppoSAX . Matt et al. interpreted the spectrum above 4 keV as the superposition of Compton reflection and warm plasma scattering of the nuclear radiation. When this continuum is extrapolated downwards to 0.1 keV, further components arise. The NGC 1068 spectrum is rich in emission lines, mainly owing to K α transitions of He-like elements from oxygen to iron, plus a K α fluorescent line from neutral iron. If the ionized lines originate in the warm scatterer, its thermal and ionization structure must be complex. From the continuum and line properties, we estimate a column density, N warm, of the warm scatterer less than a few×1021 cm−2. In the Circinus Galaxy, the absence of highly ionized iron is consistent with a scattering medium with U X≲5 and N warm∼ a few×1022 cm−2. In both cases the neutral iron line is most naturally explained as fluorescence in the medium responsible for the Compton reflection continuum. In NGC 1068 an optically thin plasma emission with kT ≃500 eV and strongly sub-solar metallicity is required, while such a component is only marginal in the Circinus Galaxy. We tentatively identify this component as emission of diffuse hot gas in the nuclear starbursts. Possible causes for the metal depletion are discussed.  相似文献   

17.
We present monitoring analysis of 8 XMM‐Newton observations of the Seyfert 2 galaxy Mrk 3, spanning a period of ∼19 months. The continuum flux in the 3–12 keV band remains constant during this observing period. The X‐ray spectrum is well described, in agreement with previous works, by a highly absorbed (N H > 1024 cm–2) power law model, with a photon index Γ = 1.9 and a strong reflection component. A strong Fe Kα line at 6.4 keV with an equivalent width of ∼500 eV is detected in the X‐ray spectrum. When we consider the co‐added spectrum we also detect a weaker emission line at 7.4 keV corresponding to neutral Ni Kα emission and weak evidence for the presence of an ionized Fe Kα line at 6.7 keV. Direct comparison with the results obtained from an earlier XMM‐Newton observation of Mrk 3, shows a decrease in the continuum flux of ∼30 per cent followed by a similar decrease in the reflected component. Both emission line components at 6.4 and 6.7 keV do not vary. However we find that an alternative model where the N H varies by 20 per cent is also plausible. In this case both the continuum and the reflected emission do not change. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Over the last few years X-ray observations of broad-line radio galaxies (BLRGs) by ASCA , RXTE and BeppoSAX have shown that these objects seem to exhibit weaker X-ray reflection features (such as the iron K α line) than radio-quiet Seyferts. This has lead to speculation that the optically thick accretion disc in radio-loud active galactic nuclei (AGN) may be truncated to an optically thin flow in the inner regions of the source. Here, we propose that the weak reflection features are a result of reprocessing in an ionized accretion disc. This would alleviate the need for a change in accretion geometry in these sources. Calculations of reflection spectra from an ionized disc for situations expected in radio-loud AGN (high accretion rate, moderate-to-high black hole mass) predict weak reprocessing features. This idea was tested by fitting the ASCA spectrum of the bright BLRG 3C 120 with the constant density ionized disc models of Ross & Fabian. A good fit was found with an ionization parameter of   ξ ∼4000 erg cm s-1  and the reflection fraction fixed at unity. If observations of BLRGs by XMM-Newton show evidence for ionized reflection then this would support the idea that a high accretion rate is likely required to launch powerful radio jets.  相似文献   

19.
We have observed four low-luminosity active galactic nuclei (AGNs) classified as type 1 Low-Ionization Nuclear Emission-Line Regions (LINERs) with the X-Ray Telescope (XRT) and the Ultraviolet–Optical Telescope (UVOT) onboard Swift , in an attempt to clarify the main powering mechanism of this class of nearby sources. Among our targets, we detect X-ray variability in NGC 3998 for the first time. The light curves of this object reveal variations of up to 30 per cent amplitude in half a day, with no significant spectral variability on this time-scale. We also observe a decrease of ∼30 per cent over 9 d, with significant spectral softening. Moreover, the X-ray flux is ∼40 per cent lower than observed in previous years. Variability is detected in M81 as well, at levels comparable to those reported previously: a flux increase in the hard X-rays (1–10 keV) of 30 per cent in ∼3 h and variations by up to a factor of 2 within a few years. This X-ray behaviour is similar to that of higher luminosity, Seyfert-type objects. Using previous high-angular-resolution imaging data from the Hubble Space Telescope ( HST ), we evaluate the diffuse UV emission due to the host galaxy and isolate the nuclear flux in our UVOT observations. All sources are detected in the UV band, at levels similar to those of the previous observations with HST . The XRT (0.2–10 keV) spectra are well described by single power laws and the UV-to-X-ray flux ratios are again consistent with those of Seyferts and radio-loud AGNs of higher luminosity. The similarity in X-ray variability and broad-band energy distributions suggests the presence of similar accretion and radiation processes in low- and high-luminosity AGNs.  相似文献   

20.
We present a study of the spectral variability of the Seyfert I galaxy MCG–6-30-15 based on the two long XMM–Newton observations from 2000 and 2001. The X–ray spectrum and variability properties of the 2001 data have previously been well described with a two-component model consisting of a variable power-law and a much less variable reflection component, containing a broad relativistic iron line from the accretion disc around a rapidly rotating Kerr black hole. The lack of variability of the reflection component has been interpreted as an effect of strong gravitational light bending very close to the central black hole. Using an improved reflection model, we fit the two-component model to time-resolved spectra of both observations. Assuming that the photon index of the power law is constant, we reconfirm the old result and show that this does not depend on the time-scale of the analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号