首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Relationships between solar wind speed and expansion rate of the coronal magnetic field have been studied mainly by in-ecliptic observations of artificial satellites and some off-ecliptic data by Ulysses. In this paper, we use the solar wind speed estimated by interplanetary scintillation (IPS) observations in the whole heliosphere. Two synoptic maps of SWS estimated by IPS observations are constructed for two Carrington rotations CR 1830 and 1901; CR 1830 starting on the 11th of June, 1990 is in the maximum phase of solar activity cycle and CR 1901 starting on the 29th of September, 1995 is in the minimum phase. Each of the maps consist of 64800 (360×180) data points. Similar synoptic maps of expansion rate of the coronal magnetic field (RBR) calculated by the so-called potential model are also constructed under a radial field assumption for CR 1830 and CR1901. Highly significant correlation (r=–0.66) is found between the SWS and the RBR during CR1901 in the solar minimum phase; that is, high-speed winds emanate from photospheric areas corresponding to low expansion rate of the coronal magnetic field and low speed winds emanate from photospheric areas of high expansion rate. A similar result is found during CR 1830 in solar maximum phase, though the correlation is relatively low (r=–0.29). The correlation is improved when both the data during CR 1830 and CR 1901 are used together; the correlation coefficient becomes –0.67 in this case. These results suggest that the correlation analysis between the SWS and the RBR can be applied to estimate the solar wind speed from the expansion rate of the coronal magnetic field, though the correlation between them may depend on the solar activity cycle. We need further study of correlation analysis for the entire solar cycle to get an accurate empirical equation for the estimation of solar wind speed. If the solar wind speed is estimated successfully by an empirical equation, it can be used as an initial condition of a solar wind model for space weather forecasts.  相似文献   

2.
Hakamada  Kazuyuki  Kojima  Masayoshi 《Solar physics》1999,187(1):115-122
The synoptic map of the solar wind speed (SWS) estimated by the computer-assisted tomography (CAT) method with interplanetary scintillation observations is constructed for the 1909 Carrington rotation. A similar synoptic map of expansion rate (RBR) of the coronal magnetic field calculated by the so-called 'potential model' with the photospheric magnetic field is also constructed under the radial field assumption (RF model). These maps consist of 64800 (180×360) data points of equal area. We examine for the first time relations between the SWS estimated by the CAT technique and the RBR calculated by the RF model. A highly significant correlation is found between the SWS and the RBR. A simple correlation coefficient is about –0.72; that is, high-velocity winds emanate from photospheric areas corresponding to a low expansion rate of the coronal magnetic field, and low-velocity winds emanate from photospheric areas of high expansion rate. This result suggests that there is some acceleration mechanism relating to the coronal field expansion.  相似文献   

3.
Ivanov  E.V.  Obridko  V.N. 《Solar physics》2002,206(1):1-19
Digitized synoptic charts of photospheric magnetic fields were analyzed for the past 4 incomplete solar activity cycles (1969–2000). The zonal structure and cyclic evolution of large-scale solar magnetic fields were investigated using the calculated values of the radial B r, |B r|, meridional B θ, |B θ|, and azimuthal B φ, |B φ| components of the solar magnetic field averaged over a Carrington rotation (CR). The time–latitude diagrams of all 6 parameters and their correlation analysis clearly reveal a zonal structure and two types of the meridional poleward drift of magnetic fields with the characteristic times of travel from the equator to the poles equal to ∼16–18 and ∼2–3 years. A conclusion is made that we observe two different processes of reorganization of magnetic fields in the Sun that are related to generation of magnetic fields and their subsequent redistribution in the process of emergence from the field generation region to the solar surface. Redistribution is supposed to be caused by some external forces (presumably, by sub-surface plasma flows in the convection zone).  相似文献   

4.
The 1968–2000 data on the mean magnetic field (MMF, longitudinal component) of the Sun are analysed to study long-time trends of the Sun's magnetic field and to check MMF calibration. It is found that, within the error limits, the mean intensity of photospheric magnetic field (the MMF strength, |H|), did not change over the last 33 years. It clearly shows, however, the presence of an 11-year periodicity caused by the solar activity cycle. Time variations of |H| correlate well with those of the radial component, |B r|, of the interplanetary magnetic field (IMF). This correlation (r=0.69) appears to be significantly higher than that between |B r| and the results of a potential source-surface extrapolation, to the Earth's orbit, of synoptic magnetic charts of the photosphere (using the so-called `saturation' factor –1 for magnetograph measurements performed in the line Fei 525.0 nm; Wang and Sheeley, 1995). It seems therefore that the true source surface of IMF is the `quiet' photosphere – background fields and coronal holes, like those for MMF. The average `effective' magnetic strength of the photospheric field is determined to be about 1.9 G. It is also shown that there is an approximate linear relation between |B r| and MMF intensity |H| (in gauss)|B r|(H 0)min×(1+C|H|)where =1.5×10–5 normalizes the photospheric field strength to 1 AU distance from the Sun, (H 0)min=1.2 G is some minimal `effective' intensity of photospheric background fields and C=1.3 G–1 an empirical constant. It is noted that good correlation between time variations of |H| and |B r| makes suspicious a correction of the photospheric magnetic fields with the use of saturation factor –1.  相似文献   

5.
Solar wind speeds (SWSs) estimated by interplanetary scintillation (IPS) observations during Carrington rotation 1753 are projected onto the so-called source-surface of 2.5 solar radii along magnetic field lines in interplanetary space. The following two working hypotheses are examined from different points of view: (1) The SWS is a weighted mean along the line of sight to a radio source; the weight for the SWS depends on the distance from theP-point, the closest approach to the Sun on the line of sight. (2) The weighting function has a very sharp peak at theP-point, so that the SWS shows a real solar wind speed at theP-point. In both the two cases, the SWSs projected onto the source surface are further projected onto the photosphere along magnetic field lines in the corona. Footpoints of these field lines are inferred as photospheric source regions of the solar wind. The intensity of the Hei (1083 nm) absorption line (HEI) in the chromosphere corresponding to these photospheric sources is interpolated from observational data. The weighted mean of the HEI is calculated in case 1. The HEI corresponding to theP-point is used in case 2. The SWS is compared with the HEI in both the two cases. It is found that the correlation between the SWS and the HEI is better in case 2 than in case 1. It is further inferred by correlation analysis between the SWS and the HEI that the solar wind is accelerated within 27 solar radii on average. Although the data examined in this paper were limited to just one solar rotation, these results suggest that the SWS estimated by the IPS technique corresponds to the solar wind speed near theP-point and the weighting function along the line of sight may have a very sharp peak near theP-point.  相似文献   

6.
Balachandran  Bala 《Solar physics》2000,195(1):195-208
Since the 1970s, the Solar-Terrestrial Environment Laboratory, Japan, has been publishing synoptic maps of solar wind velocity prepared using the technique of interplanetary scintillation. These maps, known as V-maps, are useful to study the global distribution of solar wind in the heliosphere. As the Earth-orbiting satellites are unable to probe regions outside the ecliptic, it is important to exploit the scope of interplanetary scintillation to study the solar wind properties at these regions and their relation with coronal features. It has been shown by Wang and Sheeley that there exists an inverse correlation between rate of magnetic flux expansion and the solar wind velocity. The NOAA/Space Environment Center daily updated version of the Wang and Sheeley model has been used to produce synoptic maps of solar wind velocity and magnetic field polarity for individual Carrington rotations. The predictions of the model at 1 AU have been found to be in good agreement with the observed values of the same. The present work is a comparison of the synoptic maps on the source surface using the interplanetary scintillation measurements from Japan and the NOAA/SEC version of the Wang and Sheeley model. The two results agree near the equatorial regions and the slow solar wind locations are consistent most of the times. However, at higher latitudes within ±60°, the wind velocities differ considerably. In the Wang and Sheeley model the highest speed obtained is 600 km s–1 whereas in the IPS results velocities as high as 800 km s–1 have been detected. The paper discusses the possible causes for this discrepancy and suggestion to improve the agreement between the two results.  相似文献   

7.
We describe a new method to derive the interplanetary magnetic field (IMF) out to 1 AU from photospheric magnetic field measurements. The method uses photospheric magnetograms to calculate a source surface magnetic field at 15R. Specifically, we use Wilcox Solar Observatory (WSO) magnetograms as input for the Stanford Current-Sheet Source-Surface (CSSS) model. Beyond the source surface the magnetic field is convected along velocity flow lines derived by a tomographic technique developed at UCSD and applied to interplanetary scintillation (IPS) observations. We compare the results with in situ data smoothed by an 18-h running mean. Radial and tangential magnetic field amplitudes fit well for the 20 Carrington rotations studied, which are largely from the active phase of the solar cycle. We show exemplary results for Carrington rotation 1965, which includes the Bastille Day event.  相似文献   

8.
We present the results of a study of solar wind velocity and magnetic field correlation lengths over the last 35 years. The correlation length of the magnetic field magnitude λ |B| increases on average by a factor of two at solar maxima compared to solar minima. The correlation lengths of the components of the magnetic field lBXYZ\lambda_{B_{XYZ}} and of the velocity lVYZ\lambda_{V_{YZ}} do not show this change and have similar values, indicating a continual turbulent correlation length of around 1.4×106 km. We conclude that a linear relation between λ |B|, VB 2, and Kp suggests that the former is related to the total magnetic energy in the solar wind and an estimate of the average size of geoeffective structures, which is, in turn, proportional to VB 2. By looking at the distribution of daily correlation lengths we show that the solar minimum values of λ |B| correspond to the turbulent outer scale. A tail of larger λ |B| values is present at solar maximum causing the increase in mean value.  相似文献   

9.
To study the quantitative relationship between the brightness of the coronal green line 530.5 nm Fe xiv and the strength of the magnetic field in the corona, we have calculated the cross-correlation of the corresponding synoptic maps for the period 1977 – 2001. The maps of distribution of the green-line brightness I were plotted using every-day monitoring data. The maps of the magnetic field strength B and the tangential B t and radial B r field components at the distance 1.1 R were calculated under potential approximation from the Wilcox Solar Observatory (WSO) photospheric data. It is shown that the correlation I with the field and its components calculated separately for the sunspot formation zone ±30° and the zone 40 – 70° has a cyclic character, the corresponding correlation coefficients in these zones changing in anti-phase. In the sunspot formation zone, all three coefficients are positive and have the greatest values near the cycle minimum decreasing significantly by the maximum. Above 40°, the coefficients are alternating in sign and reach the greatest positive values at the maximum and the greatest negative values, at the minimum of the cycle. It is inferred that the green-line emission in the zone ±30° is mainly controlled by B t, probably due to the existence of low arch systems. In the high-latitude zone, particularly at the minimum of the cycle, an essential influence is exerted by B r, which may be a manifestation of the dominant role of large-scale magnetic fields. Near the activity minimum, when the magnetic field organization is relatively simple, the relation between I and B for the two latitudinal zones under consideration can be represented as a power-law function of the type IB q. In the sunspot formation zone, the power index q is positive and varies from 0.75 to 1.00. In the zone 40 – 70°, it is negative and varies from −0.6 to −0.8. It is found that there is a short time interval approximately at the middle of the ascending branch of the cycle, when the relationship between I and B vanishes. The results obtained are considered in relation to various mechanisms of the corona heating.  相似文献   

10.
Principal components analysis (PCA) and independent component analysis (ICA) are used to identify global patterns in solar and space data. PCA seeks orthogonal modes of the two-point correlation matrix constructed from a data set. It permits the identification of structures that remain coherent and correlated or that recur throughout a time series. ICA seeks for maximally independent modes and takes into account all order correlations of the data. We apply PCA to the interplanetary magnetic field polarity near 1 AU and to the 3.25R source-surface fields in the solar corona. The rotations of the two-sector structures of these systems vary together to high accuracy during the active interval of solar cycle 23. We then use PCA and ICA to hunt for preferred longitudes in northern hemisphere Carrington maps of magnetic fields.  相似文献   

11.
A careful correlation analysis is made between various types of solar activity as observed at photospheric levels and the daily variations of the geomagnetic Kp-index which, in turn, is a measure of the solar wind speed. We find that in no case does a significant enough correlation exist to pin-point a physical relation between some aspect of photospheric activity and the solar wind speed. It is concluded that the physical processes that do determine the wind speed occur at coronal heights.  相似文献   

12.
Experiments based on multi-source radio occultation measurements of the circumsolar plasma at R∼4.0−70R S were carried out during 1997 – 2008 to locate the inner boundary of the solar-wind transonic transition region, R in. The data obtained were used to correlate the solar-wind stream structure and magnetic fields on the source surface (R=2.5R S) in the solar corona. The method of the investigation is based on the analysis of the dependence R in=F(|B R|) in the correlation diagrams, where R in is the inner boundary of the solar-wind transition region and |B R| is the intensity of the magnetic field at the source surface. On such diagrams, the solar wind is resolved into discrete branches, streams of different types. The analysis of the stream types using a continuous series of data from 1997 to 2008 allowed us to propose a physical criterion for delimiting the epochs in the current activity cycle.  相似文献   

13.
Spectroheliograms obtained in extreme ultraviolet (EUV) lines and the Lyman continuum are used to determine the rotation rate of the solar chromosphere, transition region, and corona. A cross-correlation analysis of the observations indicates the presence of differential rotation through the chromosphere and transition region. The rotation rate does not vary with height. The average sidereal rotation rate is given by (deg day–1) = 13.46 - 2.99 sin2 B where B is the solar latitude. This rate agrees with spectroscopic determinations of the photospheric rotation rate, but is slower by 1 deg day–1) = 13.46 - 2.99 sin2 than rates determined from the apparent motion of photospheric magnetic fields and from the brightest points of active regions observed in the EUV. The corona does not clearly show differential rotation as do the chromosphere and transition region.  相似文献   

14.
Wavelet Analysis of solar,solar wind and geomagnetic parameters   总被引:3,自引:0,他引:3  
Prabhakaran Nayar  S.R.  Radhika  V.N.  Revathy  K.  Ramadas  V. 《Solar physics》2002,208(2):359-373
The sunspot number, solar wind plasma, interplanetary magnetic field, and geomagnetic activity index A p have been analyzed using a wavelet technique to look for the presence of periods and the temporal evolution of these periods. The global wavelet spectra of these parameters, which provide information about the temporal average strength of quasi periods, exhibit the presence of a variety of prominent quasi periods around 16 years, 10.6 years, 9.6 years, 5.5 years, 1.3 years, 180 days, 154 days, 27 days, and 14 days. The wavelet spectra of sunspot number during 1873–2000, geomagnetic activity index A p during 1932–2000, and solar wind velocity and interplanetary magnetic field during 1964–2000 indicate that their spectral power evolves with time. In general, the power of the oscillations with a period of less than one year evolves rapidly with the phase of the solar cycle with their peak values changing from one cycle to the next. The temporal evolution of wavelet power in R z, v sw, n, B y, B z, |B|, and A p for each of the prominent quasi periods is studied in detail.  相似文献   

15.
Solar Wind Forecasting with Coronal Holes   总被引:1,自引:0,他引:1  
An empirical model for forecasting solar wind speed related geomagnetic events is presented here. The model is based on the estimated location and size of solar coronal holes. This method differs from models that are based on photospheric magnetograms (e.g., Wang–Sheeley model) to estimate the open field line configuration. Rather than requiring the use of a full magnetic synoptic map, the method presented here can be used to forecast solar wind velocities and magnetic polarity from a single coronal hole image, along with a single magnetic full-disk image. The coronal hole parameters used in this study are estimated with Kitt Peak Vacuum Telescope He I 1083 nm spectrograms and photospheric magnetograms. Solar wind and coronal hole data for the period between May 1992 and September 2003 are investigated. The new model is found to be accurate to within 10% of observed solar wind measurements for its best 1-month period, and it has a linear correlation coefficient of ∼0.38 for the full 11 years studied. Using a single estimated coronal hole map, the model can forecast the Earth directed solar wind velocity up to 8.5 days in advance. In addition, this method can be used with any source of coronal hole area and location data.  相似文献   

16.
The solar cycle 23 minimum period has been characterized by a weaker solar and interplanetary magnetic field. This provides an ideal time to study how the strength of the photospheric field affects the interplanetary magnetic flux and, in particular, how much the observed interplanetary fields of different cycle minima can be understood simply from differences in the areas of the coronal holes, as opposed to differences in the surface fields within them. In this study, we invoke smaller source surface radii in the potential-field source-surface (PFSS) model to construct a consistent picture of the observed coronal holes and the near-Earth interplanetary field strength as well as polarity measurements for the cycles 23 and 22 minimum periods. Although the source surface value of 2.5 R is typically used in PFSS applications, earlier studies have shown that using smaller source surface heights generates results that better match observations during low solar activity periods. We use photospheric field synoptic maps from Mount Wilson Observatory (MWO) and find that the values of ≈ 1.9 R and ≈ 1.8 R for the cycles 22 and 23 minimum periods, respectively, produce the best results. The larger coronal holes obtained for the smaller source surface radius of cycle 23 somewhat offsets the interplanetary consequences of the lower magnetic field at their photospheric footpoints. For comparison, we also use observations from the Michelson Doppler Imager (MDI) and find that the source surface radius of ≈ 1.5 R produces better results for cycle 23, rather than ≈ 1.8 R as suggested from MWO observations. Despite this difference, our results obtained from MWO and MDI observations show a qualitative consistency regarding the origins of the interplanetary field and suggest that users of PFSS models may want to consider using these smaller values for their source surface heights as long as the solar activity is low.  相似文献   

17.
The Solar Dynamics Observatory provides multiwavelength imagery from extreme ultraviolet (EUV) to visible light as well as magnetic-field measurements. These data enable us to study the nature of solar activity in different regions of the Sun, from the interior to the corona. For solar-cycle studies, synoptic maps provide a useful way to represent global activity and evolution by extracting a central meridian band from sequences of full-disk images over a full solar Carrington rotation (≈?27.3 days). We present the global evolution during Solar Cycle 24 from 20 May 2010 to 31 August 2013 (CR?2097?–?CR?2140), using synoptic maps constructed from full-disk, line-of-sight magnetic-field imagery and EUV imagery (171 Å, 193 Å, 211 Å, 304 Å, and 335 Å). The synoptic maps have a resolution of 0.1 degree in longitude and steps of 0.001 in sine of latitude. We studied the axisymmetric and non-axisymmetric structures of solar activity using these synoptic maps. To visualize the axisymmetric development of Cycle 24, we generated time–latitude (also called butterfly) images of the solar cycle in all of the wavelengths, by averaging each synoptic map over all longitudes, thus compressing it to a single vertical strip, and then assembling these strips in time order. From these time–latitude images we observe that during the ascending phase of Cycle 24 there is a very good relationship between the integrated magnetic flux and the EUV intensity inside the zone of sunspot activities. We observe a North–South asymmetry of the EUV intensity in high-latitudes. The North–South asymmetry of the emerging magnetic flux developed and resulted in a consequential asymmetry in the timing of the polar magnetic-field reversals.  相似文献   

18.
The monthly probability of occurrence of southward (B z ) component of IMF estimated independent of the sector polarity observed near earth is found to change with the magnitude of solar wind velocity. The above analysis is done for each month during two years around sunspot minima and maxima in cycle 21. The results will be interpreted in terms of association of southwardB z events with solar wind flows of distinct solar origin such as low and high speed solar wind.  相似文献   

19.
Solar eruptive phenomena, like flares and coronal mass ejections (CMEs), are governed by magnetic fields. To describe the structure of these phenomena one needs information on the magnetic flux density and the electric current density vector components in three dimensions throughout the atmosphere. However, current spectro-polarimetric measurements typically limit the determination of the vector magnetic field to only the photosphere. Therefore, there is considerable interest in accurate modeling of the solar coronal magnetic field using photospheric vector magnetograms as boundary data. In this work, we model the coronal magnetic field for global solar atmosphere using nonlinear force-free field (NLFFF) extrapolation codes implemented to a synoptic maps of photospheric vector magnetic field synthesized from the Vector Spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) as boundary condition. Using the resulting three-dimensional magnetic field, we calculate the three-dimensional electric current density and magnetic energy throughout the solar atmosphere for Carrington rotation 2124 using our global extrapolation code. We found that spatially, the low-lying, current-carrying core field demonstrates a strong concentration of free energy in the active-region core, from the photosphere to the lower corona (about 70 Mm). The free energy density appears largely co-spatial with the electric current distribution.  相似文献   

20.
Solar synoptic charts are normally displayed using Carrington Coordinates with each Carrington rotation being centered at a Carrington longitude of 180^° and with a full 360^° of solar surface properties included. For the case of reproducing solar magnetic fields in the corona and heliosphere, these maps are wrapped onto the solar surface to provide the boundary conditions for a solution to a set of modeling equations such as the potential field theory equations. Due to differential rotation, the full solar surface cannot be reproduced in this fashion since different parts of the solar surface are observed at different times. We describe here the proper technique for combining observations of the solar magnetic or velocity fields made at different times into a representation of the whole solar surface at a particular specified time that we refer to as a “snapshot heliographic map“.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号