首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
J.L. Elliot  J. Veverka 《Icarus》1976,27(3):359-386
The characteristics of spikes observed in the occultation light curves of β Scorpii by Jupiter are reviewed and discussed. Using a model in which the refractivity (density) gradients in the Jovian atmosphere are parallel to the local gravitational field, the spikes are shown to yield information about (i) the [He]/-[H2] ratio in the atmosphere, (ii) the fine scale density structure of the atmosphere and (iii) high-resolution images of the occulted stars. The spikes also serve as indicators for ray crossing. Observational limits are placed on the magnitude of horizontal refractivity gradients; these appear to be absent on scales of a few kilometers at altitudes corresponding to number densities less than 2 × 1014 cm?3. Spikes are produced by atmospheric density variations, perhaps due to atmospheric layers, density waves or turbulence. To discriminate among these possibilities, future occultation observations should be made from a number of observation sites at two or more wavelengths simultaneously with high time resolution techniques. Given a large telescope and suitable observing techniques, useful information about Jupiter's atmosphere can be obtained from future occultations of early-type stars as faint as V ~ + 6–7.  相似文献   

2.
The occultation of the Pioneer 10 spacecraft by Io (JI) provided an opportunity to obtain two S-band radio occultation measurements of its atmosphere. The dayside entry measurements revealed an ionosphere having a peak density of about 6 × 104 elcm?3 at an altitude of about 100 km. The topside scale height indicates a plasma temperature of about 406 K if it is composed of Na+ and 495 K if N2+ is principal ion. A thinner and less dense ionosphere was observed on the exit (night side), having a peak density of 9 × 103 elcm?3 at an altitude of 50 km. The topside plasma temperature is 160 K for N2? and 131 K for Na+. If the ionosphere is produced by photoionization in a manner analogous to the ionospheres of the terrestrial planets, the density of neutral particles at the surface of Io is less than 1011?1012 cm3, corresponding to a surface pressure of less than 10?8 to 10?9 bars. Two measurements of its radius were also obtained yielding a value of 1830 km for the entry and 192 km for the exit. The discrepancy between these values may indicate an ephemeris uncertainty of about 45 km. The two measurements yield an average radius of 1875 km, which is not in agreement with the results of the Beta Scorpii stellar occultation.  相似文献   

3.
Bjarne S. Haugstad 《Icarus》1978,35(3):410-421
Turbulence in planetary atmospheres leads to both fluctuating and systematic errors in atmospheric profiles derived from Doppler measurements during radio occultation. If the upper atmospheres of Venus and Jupiter are about as turbulent as the earth's troposphere, we deduce rms fractional errors in temperature and pressure of less than ~ 10?2 for the Mariner 10 and Pioneer 10/11 occultation experiments. Fractional systematic errors are typically of the order of 10?6. These estimates depende rather weakly on quantities characterizing the atmosphere and the occultation, and it is conjectured that turbulence-induced errors in atmospheric profiles derived from Doppler measurements are always very small in the weak scattering limit  相似文献   

4.
An analysis of available observations of the April 7, 1968 occultation of BD ?17° 4388 by Neptune yields upper atmosphere temperatures of ~140°K near the 5 × 1014cm?3 level. The temperature structure of the atmosphere at these levels is complicated and nonisothermal. Diurnal temperature variations are certainly less than 10°K and may be absent. The average temperature decreases by less than 15°K between 0° and 55° latitude.  相似文献   

5.
The height structure of a thick-target solar hard X-ray source is predicted for a beam injected vertically downward with a power-law spectrum and dominated by Coulomb collisional energy losses. This structure is characterised by the ratio of hard X-ray flux from an upper part of the source to that from the entire source, and is essentially a function only of the atmospheric column density ΔN (cm?2) in the upper region. These predictions are compared with the flux ratios at 150 keV and 350 keV observed by two spacecraft for five events in which the solar limb occults part of the source for one spacecraft. In three events the occulting levels h ranged from 0 to 2500 km. For these the theoretical and observed ratios are found to be comparable for values of ΔN in reasonable accord with those found at these altitudes by optical and UV spectroscopic modelling of flare chromospheres. In one event the occultation ratio was observed to rise after the burst peak and it is found that this rise is consistent with an increase in ΔN due to conductively driven chromospheric evaporation. However the energy dependence of the occultation ratio is not consistent with that predicted by the model and it is concluded that non-collisional losses must be significant in beam dynamics. In the other two events, the occultation level h was ? 25 000 km. For these the energy dependence of the occultation ratio is comparable with the model predictions. However the values of ΔN required demand extremely high coronal densities and/or acceleration altitudes. Furthermore, the one observed evolution of the occultation ratio is entirely inconsistent with the model. It is concluded that in these, bremsstrahlung emissions other than that from a beam must be important.  相似文献   

6.
The technical system of the Sino-Russian joint satellite-to-satellite Mars ionosphere occultation is analyzed and introduced. The analogue computation of the observed values of the radio waves of the ionosphere occultation event is carried out by adopting the three-dimensional ray tracking method and the electron density profile inversion is conducted by means of the simulated occultation observational data, with the result showing that the emulation algorithm is reliable. By taking advantage of the emulation method the case computation and analysis of the inversion errors caused by the observational error of the occultation radio wave phase and the satellite orbital error are respectively carried out, and it is obtained from the result that the effect of the phase measuring error of the 5% circle on the result of the daytime ionosphere occultation exploration may be neglected, while the absolute error of the night electron density measurement is less than 4 × 108 m?3, and the main effect of the satellite orbital error on the occultation leads to the lifting or falling of the ionospheric height. The result shows that the technical system of the Sino-Russian joint Mars ionosphere occultation exploration is advanced. It can be expected that the high accuracy electron density profile is obtained and the technical system can be applied to the exploration of the lunar ionospheric environment.  相似文献   

7.
Asteroid sizes can be directly measured by observing occultations of stars by asteroids. When there are enough observations across the path of the shadow, the asteroid’s projected silhouette can be reconstructed. Asteroid shape models derived from photometry by the lightcurve inversion method enable us to predict the orientation of an asteroid for the time of occultation. By scaling the shape model to fit the occultation chords, we can determine the asteroid size with a relative accuracy of typically ∼10%. We combine shape and spin state models of 44 asteroids (14 of them are new or updated models) with the available occultation data to derive asteroid effective diameters. In many cases, occultations allow us to reject one of two possible pole solutions that were derived from photometry. We show that by combining results obtained from lightcurve inversion with occultation timings, we can obtain unique physical models of asteroids.  相似文献   

8.
Monte Carlo simulations are used to model the July 14, 2005 UVIS stellar occultation observations of the water vapor plumes on Enceladus. These simulations indicate that the observations can be best fit if the water molecules ejected along the Tiger Stripes in the South Polar region of Enceladus have a vertical surface velocity of 300-500 m/s at the surface. The high surface velocity suggests that the plumes on Enceladus originate from some depth beneath the surface. The total escape rate of water molecules is 4-6×1027 s−1, or 120-180 kg/s, consistent with previous works, and more than 100 times the estimated mass escape rate for ice particles. The average deposition rate in the South Polar region is on the order of 1011 cm−2 s−1, yielding a resurfacing rate as high as 3×10−4 cm/yr. The globally averaged deposition rate of water molecules is about one order of magnitude lower.  相似文献   

9.
Stellar ultraviolet light near 1500 Å is attenuated in the Earth's upper atmosphere due to strong absorption in the Schumann-Runge continuum of molecular oxygen. The intensity of stars in the Schumann-Runge continuum region has been monitored by the University of Wisconsin stellar photometers aboard the OAO-2 satellite during occultation of the star by the Earth's atmosphere. These data have been used to determine the molecular oxygen number density profile at the occultation tangent point. The results of 14 stellar occultations obtained in low and middle latitudes are presented giving the night-time vertical number density profile of molecular oxygen in the 140–200 km region. In general, the measured molecular oxygen number density is about a factor of 2 lower than the number densities predicted by the CIRA 1965 model. Also, the number density at a given height appears to decrease with decreasing solar activity. Measurements taken at low latitudes during the August 1970 geomagnetic storm showed a decrease in the molecular oxygen number density at a given height several days after the peak of the storm followed by a slow recovery to pre-storm densities.  相似文献   

10.
A re-analysis of the observations of occultation of MKE 31 by Neptune on September 12, 1983 (Pandey et al., 1984) shows that the possible ring system of Neptune extends from 64400 km to 64190 km in Neptune's equatorial plane.  相似文献   

11.
Radio occultation studies of the structure of planetary atmospheres have generally involved relatively shallow penetration of the spacecraft behind the limb of the planet in the plane of the sky. Current radio link sensitivities allow detection of the radio signals at all occultation depths, whenever the planet-spacecraft distance is sufficiently large for the refraction to occur at atmospheric heights where microwave absorption is not too large. Voyager 1 at Jupiter and Voyager 2 at Saturn will pass almost directly behind the planets as viewed from the Earth. Thus they will pass through the caustics that corresponds to the focal line of a spherical planet, expanded by oblateness into a surface approximating a four-cusp cylinder. In the plane of the sky, the projection of this surface approximates the evolute of the planet's limb. As the spacecraft passes behind the planet with its antenna tracking the occulting limb, the strength of the radio signals received on Earth will at first decrease due to defocusing in the atmosphere, but then increase as the evolute is approached, because of the focusing caused by limb curvature. Inside the evolute there are four simultaneous signal paths over four limb positions. If we neglect absorption, focused signals for an instant could become orders of magnitude stronger than for the unocculted spacecraft. Measurements of the frequency and intensity of deep occultation signals, and of the timing and character of these “evolute flashes”, could provide information on atmospheric absorption, turbulence, and structure, and on details of the shape of the atmosphere at the focusing limbs as affected, for example, by planetary gravitational moments, rotation, and zonal winds. Such observations will be attempted with Voyager and potentially could be very fruitful in the Pioneer Venus and Galileo (Jupiter) orbiting missions.  相似文献   

12.
《Planetary and Space Science》2007,55(12):1673-1700
Spectroscopy for the investigation of the characteristics of the atmosphere of Venus (SPICAV) is a suite of three spectrometers in the UV and IR range with a total mass of 13.9 kg flying on the Venus Express (VEX) orbiter, dedicated to the study of the atmosphere of Venus from ground level to the outermost hydrogen corona at more than 40,000 km. It is derived from the SPICAM instrument already flying on board Mars Express (MEX) with great success, with the addition of a new IR high-resolution spectrometer, solar occultation IR (SOIR), working in the solar occultation mode. The instrument consists of three spectrometers and a simple data processing unit providing the interface of these channels with the spacecraft.A UV spectrometer (118–320 nm, resolution 1.5 nm) is identical to the MEX version. It is dedicated to nadir viewing, limb viewing and vertical profiling by stellar and solar occultation. In nadir orientation, SPICAV UV will analyse the albedo spectrum (solar light scattered back from the clouds) to retrieve SO2, and the distribution of the UV-blue absorber (of still unknown origin) on the dayside with implications for cloud structure and atmospheric dynamics. On the nightside, γ and δ bands of NO will be studied, as well as emissions produced by electron precipitations. In the stellar occultation mode the UV sensor will measure the vertical profiles of CO2, temperature, SO2, SO, clouds and aerosols. The density/temperature profiles obtained with SPICAV will constrain and aid in the development of dynamical atmospheric models, from cloud top (∼60 km) to 160 km in the atmosphere. This is essential for future missions that would rely on aerocapture and aerobraking. UV observations of the upper atmosphere will allow studies of the ionosphere through the emissions of CO, CO+, and CO2+, and its direct interaction with the solar wind. It will study the H corona, with its two different scale heights, and it will allow a better understanding of escape mechanisms and estimates of their magnitude, crucial for insight into the long-term evolution of the atmosphere.The SPICAV VIS-IR sensor (0.7–1.7 μm, resolution 0.5–1.2 nm) employs a pioneering technology: an acousto-optical tunable filter (AOTF). On the nightside, it will study the thermal emission peeping through the clouds, complementing the observations of both VIRTIS and Planetary Fourier Spectrometer (PFS) on VEX. In solar occultation mode this channel will study the vertical structure of H2O, CO2, and aerosols.The SOIR spectrometer is a new solar occultation IR spectrometer in the range λ=2.2–4.3 μm, with a spectral resolution λλ>15,000, the highest on board VEX. This new concept includes a combination of an echelle grating and an AOTF crystal to sort out one order at a time. The main objective is to measure HDO and H2O in solar occultation, in order to characterize the escape of D atoms from the upper atmosphere and give more insight about the evolution of water on Venus. It will also study isotopes of CO2 and minor species, and provides a sensitive search for new species in the upper atmosphere of Venus. It will attempt to measure also the nightside emission, which would allow a sensitive measurement of HDO in the lower atmosphere, to be compared to the ratio in the upper atmosphere, and possibly discover new minor atmospheric constituents.  相似文献   

13.
The ozone height profile in the Arctic, at the end of the winter, has been measured up to an altitude of 100 km using a combined solar occultation and 1.27 μ oxygen emission technique. The typical two layer structure has been observed with a high altitude minimum near 80 km and a maximum at 86 km. The measured concentration in this ozone bulge was 5.1 × 107cm?3, typical of that measured at 52°N for the summer months. It is suggested that this reduced ozone concentration may have been associated with a stratospheric warming event that was in progress at the time of the measurement.  相似文献   

14.
The 14 May 1971 occultation β Scorpi C by Io was successfully observed in ultraviolet light near Kingston, Jamaica. Within the limits established by time resolution and the signal-to-noise ratio, both the disappearance and reappearance were found to be instantaneous. Upper limits for the surface pressure for N2, CH4, and H2 atmospheres are 0.09, 0.13, and 44.ubar, respectively. The corresponding number densities are 6.2 × 1012, 9.4 × 1012, and 3.2 × 1015 cm−3. An isothermal atmosphere at a temperature of 100°K was assumed.  相似文献   

15.
D.W. Dunham  J.L. Elliot 《Icarus》1978,33(2):311-318
The method of determining local lunar limb slopes, and the consequent time scale needed for diameter studies, from accurate occultation timings at two nearby telescope is described. The results for the photoelectric observations made at Mauna Kea Observatory during the occultation of Saturn's satellites on March 30, 1974, are discussed. Analysis of all observations of occultations of Saturn's satellites during 1974 indicates possible errors in the ephemerides of Saturn and its satellites.  相似文献   

16.
In view of the scheduled satellite mission EXOSAT (European X-Ray Observatory Satellite) of ESA (European Space Agency) the lunar occultation technique to determine the position of point-like X-ray sources is investigated. In particular, this paper explores the accuracy of the determination of the starting and ending time of an occultation, both of which are directly related to the size of the resulting position error box. An attempt is made to calculate analytically the distribution function of the estimated starting time, and some corresponding numerical evaluations are given. Finally, it is shown by Monte Carlo simulations that a slightly modifiedX 2-minimum method can be used to analyse the X-ray occultation data.  相似文献   

17.
Stellar ultraviolet light near 2500 Å is attenuated in the Earth's upper atmosphere due to strong absorption in the Hartley continuum of ozone. The intensity of stars in the Hartley continuum region has been monitored by the University of Wisconsin stellar photometers aboard the OAO-2 satellite during occultation of the star by the Earth's atmosphere. These data have been used to determine the ozone number density profile at the occultation tangent point. The results of approximately 12 stellar occultations, obtained in low latitudes, are presented, giving the nighttime vertical number density profile of ozone in the 60- to 100-km region. The nighttime ozone number density has a bulge in its vertical profile with a peak of 1 to 2×108 cm?3 at approximately 83 km and a minimum near 75 km. The shape of the bulge in the ozone number density profile shows considerable variability with no apparent seasonal or solar cycle change. The ozone profiles obtained during a geomagnetic storm showed little variation at low latitudes.  相似文献   

18.
Two photoelectric records of the occultation event on 10 March, 1977, obtained by two 102-cm-aperture telescopes, spaced 1500 km apart, are critically analysed and indications of a complex structure of distribution of occulting material surrounding the planet are obtained. The results confirm the existence of a very shallow broad ring system with local condensation lanes of narrow and intermediate widths. A system of numerous thin rings are also present around the planet in the equatorial plane.  相似文献   

19.
The relation between period and spectral type is examined for 33 W Ursae Majoris stars for which accurate observations have enabled us to clearly classify their eclipse types at the primary minimum (transit (A) or occultation (W)). About a half of the examined stars are of A-type, and the rest correspond to W-type. Periods of W-type systems are found to fall within 0.25–0.5 days, while periods of A-type systems range between 0.25–0.9 days. For A-type systems certain period-spectral type relations seem to hold, but for W-type systems no definite relation could be found. Statistically, a W Ursae Majoris star will undergo a period change every ~17000 cycles, on the average, and a time scale for the period change (d lnP/dt)?1 is estimated to be about 106 years.  相似文献   

20.
Bjarne S. Haugstad 《Icarus》1979,37(1):322-335
Power spectra of phase and intensity scintillations during occultation by turbulent planetary atmospheres are significantly affected by the inhomogeneous background upon which the turbulence is superimposed. Such coupling is particularly pronounced in the intensity, where there is also a marked difference in spectral shape between a central and a grazing occultation. While the former has its structural features smoothed by coupling to the inhomogeneous background, such features are enhanced in the latter. Indeed, the latter power spectrum peaks around the characteristic frequency that is determined by the size of the free-space Fresnel zone and the ray velocity in the atmosphere; at higher frequencies strong fringes develop in the power spectrum. A confrontation between the theoretical scintillation spectra computed here and those calculated from the Mariner 5 Venus mission by R. Woo, A. Ishimaru, and W. B. Kendall (1974, J. Atmos. Sci.31, 1698–1706) is inconclusive, mainly because of insufficient statistical resolution. Phase and/or intensity power spectra computed from occultation data may be used to deduce characteristics of the turbulence and to distinguish turbulence from other perturbations in the refractive index. Such determinations are facilitated if observations are made at two or more frequencies (radio occultation) or in two or more colors (stellar occultation).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号