首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have measured polarization of the 1.1 mm and 0.8 mm continuum emission for 3 pre-T Tauri stars and 2 T Tauri stars. Positive detections were made for NGC 1333 IRAS 4 and IRAS 16293-2422, while L1551 IRS 5 and HL Tau were only marginally detected. For GG Tau we measured a 2 upper limit of 3%. The polarization is interpreted in terms of thermal emission by magnetically aligned dust grains in circumstellar disks or envelopes. We have found a definite geometrical relation between the polarization and other circumstellar structure.  相似文献   

2.
We re‐discuss the evolutionary state of upper main sequence magnetic stars using a sample of Ap and Bp stars with accurate Hipparcos parallaxes and definitely determined longitudinal magnetic fields. We confirm our previous results obtained from the study of Ap and Bp stars with accurate measurements of the mean magnetic field modulus and mean quadratic magnetic fields that magnetic stars of mass M < 3 M are concentrated towards the centre of the main‐sequence band. In contrast, stars with masses M > 3 M seem to be concentrated closer to the ZAMS. The study of a few known members of nearby open clusters with accurate Hipparcos parallaxes confirms these conclusions. Stronger magnetic fields tend to be found in hotter, younger and more massive stars, as well as in stars with shorter rotation periods. The longest rotation periods are found only in stars which spent already more than 40% of their main sequence life, in the mass domain between 1.8 and 3 M and with log g values ranging from 3.80 to 4.13. No evidence is found for any loss of angular momentum during the main‐sequence life. The magnetic flux remains constant over the stellar life time on the main sequence. An excess of stars with large obliquities β is detected in both higher and lower mass stars. It is quite possible that the angle β becomes close to 0. in slower rotating stars of mass M > 3 M too, analog to the behaviour of angles β in slowly rotating stars of M < 3 M. The obliquity angle distribution as inferred from the distribution of r ‐values appears random at the time magnetic stars become observable on the H‐R diagram. After quite a short time spent on the main sequence, the obliquity angle β tends to reach values close to either 90. or 0. for M < 3 M. The evolution of the obliquity angle β seems to be somewhat different for low and high mass stars. While we find a strong hint for an increase of β with the elapsed time on the main sequence for stars with M > 3 M, no similar trend is found for stars with M < 3 M. However, the predominance of high values of β at advanced ages in these stars is notable. As the physics governing the processes taking place in magnetised atmospheres remains poorly understood, magnetic field properties have to be considered in the framework of dynamo or fossil field theories. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The orbital period variations of the Algol-type semidetached binary UW Vir are analyzed. It is shown that in addition to a long-term rapid increase (dP/dt = + 1.37 × 10−6 day/year), its orbit period has a variation with the period of 62.3 years. Based on the basic physical parameters given by Brancewicz and Dworak in 1980, the physical mechanisms causing the orbital period variations are investigated. The analysis indicates that the periodical variation of orbital period can be interpreted by the light-travel time effect due to the presence of a third body with the mass of M3 ≥ 0.94 M. As no observational information has been reported for this tertiary component, it might be a compact object (e.g., a white dwarf). The long-term increase of orbital period can be explained in terms of the mass transfer from the secondary to the primary component (dM2/dt = 1.43 × 10−7 M/year). This is in agreement with the semidetached configuration of the system with a lobe-filling secondary component. But according to the evolution theory of binaries, the Algol-type semidetached binary UW Vir should be at the evolutionary stage of slow mass transfer on the nuclear-reaction timescale of the secondary component. However, the analysis shows that the timescale for the periodical variation of orbital period is much shorter than the nuclear-reaction timescale of the secondary component, but close to the thermodynamic timescale of the secondary. This reveals that: (1) This binary system is at the evolutionary stage of rapid mass transfer on the thermodynamic timescale of the secondary component; or (2) The circumstellar matter of the system makes a contribution to the rapid increase of orbital period via the angular momentum transfer.  相似文献   

4.
We have obtained complete phase coverage of the WC7+O binaries WR 42 = HD 97152 and WR 79 = HD 152270 with high signal-to-noise ratio (S/N), moderate-resolution spectra. Remarkable orbital phase-locked profile variations of the C  iii λ 5696 line are observed and interpreted as arising from colliding wind effects. Within this scenario, we have modelled the spectra using a purely geometrical model that assumes a cone-shaped wind–wind interaction region which partially wraps around the O star. Such modelling holds the exciting promise of revealing a number of interesting parameters for WR+O binaries, such as the orbital inclination, the streaming velocity of material in the interaction region and the ratio of wind momentum flux. Knowledge of these parameters in turn leads to the possibility of a better understanding of WR star masses, mass-loss rates and wind region characteristics.  相似文献   

5.
Results are presented from multicolor photometric and polarimetric studies of the eclipsing binary RY Per during 2001-2003. Light curves in the UBVRI bands are shown. An analysis of the variations in the linear polarization makes it possible to separate it into interstellar and intrinsic components. The degree of intrinsic polarization of the system away from the eclipse attains a maximum (0.23%) in the B band and falls off rapidly with increasing wavelength. This dependence is indicative of the existence of optically thick gas in the system. An analysis of the polarimetric data also shows that: the total mass of optically thin gas in the system is about 2·10-10 M , while the total mass of the shell must be several times that; and, the inclination of the orbital plane of the binary system relative to the galactic plane is 4° or 18°.  相似文献   

6.
Parallaxes of W UMa stars in the Hipparcos catalogue have been analyzed. 31 W UMa stars, which have the most accurate parallaxes (σπ /π < 0.15) which are neither associated with a photometric tertiary nor with evidence of a visual companion, were selected for re‐calibrating the Period‐Luminosity‐Color (PLC) relation of W UMa stars. Using the Lutz‐Kelker (LK) bias corrected (most probable) parallaxes, periods (0.26 < P < 0.87, P in days), and colors (0.04 < (BV)0 < 1.28) of the 31 selected W UMa, the PLC relation have been revised and re‐calibrated. The difference between the old (revised but not bias corrected) and the new (LK bias corrected) relations are almost negligible in predicting the distances of W UMa stars up to about 100 pc. But, it increases and may become intolerable as distances of stars increase. Additionally, using (JH)0 and (HKs)0 colors from 2MASS (TwoMicron All Sky Survey) data, a PLC relation working with infrared data was derived. It can be used with infrared colors in the range –0.01 < (JH)0 < 0.58, and –0.10 < (HKs)0 < 0.18. Despite of the fact that the 2MASS data refer to single epoch observations which are not guaranteed to be taken at maximum brightness of theWUMa stars, the established relation has been found surprisingly consistent and reliable in predicting LK corrected distances of W UMa stars (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
This work provides a general vision of the limits of validity of the Frequency Ratio Method applied to the g‐mode pulsators in asymptotic regime, the γ Doradus stars. In particular, the work is mainly focused on the role of rotation which is found one of the most important source of uncertainty of the method. The particular case of the moderately rotating γ Doradus star HD48501 is discussed. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Summary From the early discovery in 1948 of X-rays from the Solar corona, X-ray spectroscopy has proven to be an invaluable tool in studying hot astrophysical and laboratory plasmas. Because the emission line spectra and continua from optically thin plasmas are fairly well known, high-resolution X-ray spectroscopy has its most obvious application in the measurement of optically thin sources such as the coronae of stars. In particular X-ray observations with theEINSTEIN observatory have demonstrated that soft X-ray emitting coronae are a common feature among stars on the cool side of the Hertzsprung-Russell diagram, with the probable exception of single very cool giant and supergiant stars and A-type dwarfs. Observations with the spectrometers aboardEINSTEIN andEXOSAT have shown that data of even modest spectral resolution (/ = 10–100) permit the identification of coronal material at different temperatures whose existence may relate to a range of possible magnetic loop structures in the hot outer atmospheres of these stars. The higher spectral resolution of the next generation of spectrometers aboard NASA'sAXAF and ESA'sXMM will allow to fully resolve the coronal temperature structure and to enable velocity diagnostics and the determination of coronal densities, from which the loop geometry (i.e. surface filling factors and loop lengths) can be derived. In this paper various diagnostic techniques are reviewed and the spectral results fromEINSTEIN andEXOSAT are discussed. A number of spectral simulations forAXAF andXMM, especially high-resolution iron K-shell, L-shell, and2s-2p spectra in the wavelength regions around 1.9 Å, 10 Å, and 100 Å, respectively, are shown to demonstrate the capabilities for temperature, density, and velocity diagnostics. Finally, iron K-shell spectra are simulated for various types of detectors such as microcalorimeter, Nb-junction, and CCD.  相似文献   

9.
Understanding transport processes inside stars is one of the main goals of asteroseismology. Chemical turbulent mixing can affect the internal distribution of μ near the energy generating core, having an effect on the evolutionary tracks similar to that of overshooting. This mixing leads to a smoother chemical composition profile near the edge of the convective core, which is reflected in the behavior of the buoyancy frequency and, therefore, in the frequencies of gravity modes. We describe the effects of convective overshooting and turbulent mixing on the frequencies of gravity modes in B‐type main sequence stars. In particular, the cases of p‐g mixed modes in β Cep stars and high‐order modes in SPBs are considered. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The influence of the basic rotation on anisotropic and inhomogeneous turbulence is discussed in the context of differential rotation theory. An improved representation for the original turbulence leads to a Λ‐effect which complies with the results of 3D numerical simulations. The resulting rotation law and meridional flow agree well with both the surface observations (∂Ω/∂r < 0 and meridional flow towards the poles) and with the findings of helioseismology. The computed equatorward flow at the bottom of convection zone has an amplitude of about 10 m/s and may be significant for the solar dynamo. The depth of the meridional flow penetration into the radiative zone is proportional to ν0.5core, where νcore is the viscosity beneath the convection zone. The penetration is very small if the tachocline is laminar. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The paper describes the JHK colours of late-type stars which were investigated as part of a survey of South Galactic Cap (b < -30°) IRAS sources selected on the basis of their 12/25µm flux ratios as high mass-loss candidates. Near-infrared two-colour diagrams provide an effective technique for distinguishing between various groups of late-type stars. Such diagrams are also useful in indicating which stars are likely to be peculiar and worthy of more detailed study. The late-type stars isolated by this survey comprise: 61 Mira variables (3 of which are carbon stars with very thick shells), 3 young stellar objects, 4 interacting binaries, 2 semi-regular carbon variables and 154 oxygen-rich giants.  相似文献   

12.
We present more than 1000‐day long photometry of EY Draconis in BV (RI)C passbands. The changes in the light curve are caused by the spottedness of the rotating surface. Modelling of the spotted surface shows that there are two large active regions present on the star on the opposite hemispheres. The evolution of the surface patterns suggests a flip‐flop phenomenon. Using Fourier analysis, we detect a rotation period of Prot = 0.45875 d, and an activity cycle with P ≈ 350 d, similar to the 11‐year long cycle of the Sun. This cycle with its year‐long period is the shortest one ever detected on active stars. Two bright flares are also detected and analysed (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The variability of line profiles in spectra of bright OB stars has been studied.We obtain more than 1000 high quality spectra of δ Ori A, λ Ori A, α Cam, 19 Cep, ι Her, ρ Leo and other target stars. We revealed the line profile microvariability of small amplitude (0.5–3% in the adjacent continuum units) for all observed stars. For most stars only cyclic components of the line profile variability (LPV) at the time scales from hours to days were detected. These components seem to be connected with both the non-radial pulsations (NRP) and rotation line profile modulation. In the spectra of δ Ori A and λ Ori A we found the evidences of the stochastic LPV in spectra, probably connected with the small clumps in the stellar wind. On the basis of recent observations we discuss the origin of the magnetic field of early-type stars. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
SiO maser emission in AGB stars is found to be systematically distributed in ring structures, displaying tangential linear polarization. Using the VLBA, we have performed observations of such SiO maser emission at 43 GHz in the circumstellar envelopes of several late-type stars. We simultaneously mapped the v=1 and v=2, J=1–0 transitions. Our new maps show, for most spots, a systematic spatial shift between both maser lines. We discuss the implication of these results on the possible pumping mechanisms, concluding that the existing data favour radiative pumping schemes.  相似文献   

15.
We have obtained infrared colors and limiting magnitudes from 1.25–4.8µm for a sample of 26 of the cm continuum radio sources located in the core of the Oph molecular cloud. Their colors demonstrate that the majority of the sources appear to be heavily reddened objects surrounded by circumstellar accretion disks. In these cases the radio emission most likely diagnoses accretion driven energetic outflow phenomena: either ionized winds or possibly synchrotron emission from shocked gas associated with stellar jets.  相似文献   

16.
Solutions of the new standard V‐light curves for the EA type binary UV Leo are obtained using the PHOEBE code (0.31a version). Absolute parameters of the stellar components were then determined, enabling them to be positioned on the absolute magnitude‐color (l.e. MV vs. BV) isochrones diagram, based on which the age of the system is estimated to be >4×109 yr. Also times of minima data (“OC curve”) have been analyzed. Apart from an almost sinusoidal variation with a period of 29.63 yr, which modulates the orbital period, and was attributed to a third body orbiting around the system, other cyclic variation in the orbital period and also brightness, with time scales of 24.25 and 22.77 yr were found, respectively. We associate this with a magnetic activity cycle newly reported here for UV Leo (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Lutz‐Kelker bias corrected absolute magnitude calibrations for the detached binary systems with main‐sequence components are presented. The absolute magnitudes of the calibrator stars were derived at intrinsic colours of Johnson‐Cousins and 2MASS (Two Micron All Sky Survey) photometric systems. As for the calibrator stars, 44 detached binaries were selected from the Hipparcos catalogue, which have relative observed parallax errors smaller than 15% (σπ ≤ 0.15). The calibration equations which provide the corrected absolute magnitude for optical and near‐infrared pass bands are valid for wide ranges of colours and absolute magnitudes: –0.18 < (BV)0 < 0.91, –1.6 < MV < 5.5 and –0.15 < (JH)0 < 0.50, –0.02 < (HKs)0 < 0.13, 0 < MJ < 4, respectively. The distances computed using the luminosity‐colours (LCs) relation with optical (BV) and near‐infrared (JHKs) observations were compared to the distances found from various other methods. The results show that new absolute magnitude calibrations of this study can be used as a convenient statistical tool to estimate the true distances of detached binaries out of Hipparcos' distance limit. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We present results of an ≈20-ks X-ray observation of the Wolf–Rayet (WR) binary system WR 147 obtained with XMM–Newton . Previous studies have shown that this system consists of a nitrogen-type WN8 star plus an OB companion whose winds are interacting to produce a colliding wind shock. X-ray spectra from the pn and MOS detectors confirm the high extinction reported from infrared studies and reveal hot plasma including the first detection of the Fe Kα line complex at 6.67 keV. Spectral fits with a constant-temperature plane-parallel shock model give a shock temperature   kT shock= 2.7  keV (   T shock≈ 31  MK), close to but slightly hotter than the maximum temperature predicted for a colliding wind shock. Optically thin plasma models suggest even higher temperatures, which are not yet ruled out. The X-ray spectra are harder than can be accounted for using 2D numerical colliding wind shock models based on nominal mass-loss parameters. Possible explanations include: (i) underestimates of the terminal wind speeds or wind abundances, (ii) overly simplistic colliding wind models or (iii) the presence of other X-ray emission mechanisms besides colliding wind shocks. Further improvement of the numerical models to include potentially important physics such as non-equilibrium ionization will be needed to rigorously test the colliding wind interpretation.  相似文献   

19.
We investigate how the frequencies of gravity modes depend on the detailed properties of the chemical composition gradient that develops near the core of main‐sequence stars and, therefore, on the transport processes that are able to modify the μ profile in the central regions. We show that in main‐sequence models, similarly to the case of white dwarfs, the periods of high‐order gravity modes are accurately described by a uniform period spacing superposed to an oscillatory component. The periodicity and amplitude of such a component are related, respectively, to the location and sharpness of the μ gradient. We briefly discuss and interpret, by means of this simple approximation, the effect of turbulent mixing near the core on the periods of both high‐order and low‐order g modes, as well as of modes of mixed pressure‐gravity character. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号