首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, we employ a nonlocal Nambu–Jona–Lasinio (NJL) model with a Gaussian form factor that is dependent on the spatial components of the momentum (3D-FF). Focusing on the temperature-baryon chemical potential plane, we investigate some aspects of the phase diagram. Initially, we propose an assumption that the range of interactions in momentum space may be modified by temperature, allowing us to obtain the critical temperature values based on lattice QCD (LQCD) predictions. Subsequently, we consider this model within a hybrid framework to examine the effects of temperature, together with neutrino trapping, in compact object configurations.  相似文献   

2.
The electrostatic potential of electrons near the surface of static strange stars at zero temperature is studied within the frame of the MIT bag model. We find that for QCD parameters within rather wide ranges, if the nuclear crust on the strange star is at a density leading to neutron drip, then the electrostatic potential will be insufficient to establish an outwardly directed electric field, which is crucial for the survival of such a crust. If a minimum gap width of 200 fm is brought in as a more stringent constraint, then our calculations will completely rule out the possibility of such crusts. Therefore, our results argue against the existence of neutron-drip crusts in nature.  相似文献   

3.
The long awaited event of the detection of a gravitational wave from a binary neutron star merger and its electromagnetic counterparts marked the beginning of a new era in observational astrophysics. The brand-new field of gravitational wave astronomy combined with multi-messenger observations will uncover violent, highly energetic astrophysical events that could not be explored before by humankind. This article focuses on the presumable appearance of a hadron–quark phase transition and the formation of regions of deconfined quark matter in the interior of a neutron star merger product. The evolution of density and temperature profiles inside the inner region of the produced hypermassive/supramassive neutron star advises an incorporation of a hadron–quark phase transition in the equation of state of neutron star matter. The highly densed and hot neutron star matter of the remnant populate regions in the QCD phase diagram where a non neglectable amount of deconfined quark matter is expected to be present. If a strong hadron–quark phase transition would happen during the post-merger phase, it will be imprinted in the spectral properties of the emitted gravitational wave signal and might give an additional contribution to the dynamically emitted outflow of mass.  相似文献   

4.
Recently it has been argued that a possible source for the dark energy may arise due to the contribution to the vacuum energy of the QCD ghost in a time-dependent background. In this paper we establish a connection between interacting ghost dark energy and tachyon field. It is demonstrated that the evolution of the ghost dark energy dominated universe can be described completely by a single tachyon scalar field. The potential and the dynamics of the tachyon field are reconstructed according to the evolutionary behavior of ghost energy density.  相似文献   

5.
Considering power-law for of scale factor in a flat FRW universe we reported a reconstruction scheme for f(G) gravity based on QCD ghost dark energy. We reconstructed the effective equation of state parameter and observed “quintessence” behavior of the equation of state parameter. Furthermore, considering dynamical apparent horizon as the enveloping horizon of the universe we have observed that the generalized second law of thermodynamics is valid for this reconstructed f(G) gravity.  相似文献   

6.
From recent reports on terrestrial heavy ion collision experiments it appears that one may not obtain information about the existence of asymptotic freedom (AF) and chiral symmetry restoration (CSR) for quarks of QCD at high density. This information may still be obtained from compact stars – if they are made up of strange quark matter (SQM).
Very high gravitational redshift lines (GRL), seen from some compact stars, seem to suggest high ratios of mass and radius ( M / R ) for them. This is suggestive of strange stars (SS) and can in fact be fitted very well with SQM equation of state (EOS) deduced with built in AF and CSR. In some other stars broad absorption bands (BAB) appear at about  ∼0.3 keV  and multiples thereof, that may fit in very well with resonance with harmonic compressional breathing mode frequencies of these SS. Emission at these frequencies are also observed in six stars.
If these two features of large GRL and BAB were observed together in a single star, it would strengthen the possibility for the existence of SS in nature and would vindicate the current dogma of AF and CSR that we believe in QCD. Recently, in 4U  1700 − 24  , both features appear to be detected, which may well be interpreted as observation of SS – although the group that analyzed the data did not observe this possibility. We predict that if the shifted lines, that has been observed, are from neon with GRL shift   z = 0.4  – then the compact object emitting it is a SS of mass 1.2   M  and radius 7 km. In addition the fit to the spectrum leaves a residual with broad dips at 0.35 keV and multiples thereof, as in 1E  1207 − 5209  which is again suggestive of SS.  相似文献   

7.
The Nambu–Jona-Lasinio model is known for its simplicity and capacity to reproduce some of the basic characteristics of the quantum chromodynamics phase diagram. However, since it is a nonrenormalizable model, there are regularization issues that should be treated conveniently. This is the case when considering the quark anomalous magnetic moment (AMM) when external constant magnetic fields are present. Regularization procedures based on entangled functions between the magnetic field and the cutoff of the model can predict first-order phase transitions for chiral symmetry restoration at finite values of magnetic fields and inverse magnetic catalysis. The strengths of magnetic fields explored in NJL model and lattice QCD do not show first-order phase transition. In the present work, we show that some of the previous results are regularization-dependent effects and how to handle the divergences using the vacuum magnetic regularization scheme.  相似文献   

8.
The expected proton and neutrino fluxes from decays of massive metastable relic particles are calculated using the HERWIG QCD event generator. The predicted proton spectrum can account for the observed flux of extremely high energy cosmic rays beyond the Greisen-Zatsepin-Kuzmin cutoff, for a decaying particle mass of (1012) GeV. The lifetime required is of (1020) yr if such particles constitute all of the dark matter (with a proportionally shorter lifetime for a smaller contribution). Such values are plausible if the metastable particles are hadron-like bound states from the hidden sector of supersymmetry breaking which decay through nonrenormalizable interactions. The expected ratio of the proton to neutrino flux is given as a diagonistic of the decaying particle model for the forthcoming Pierre Auger Project.  相似文献   

9.
HEMAS-DPM is a Monte Carlo for the simulation of very high energy cosmic ray showers, which includes the DPMJET-II code based on the two component Dual Parton Model. DPMJET-II provides also charm production in agreement with data and, for p exceeding 5 GeV/c, with perturbative QCD results in proton-proton interactions. In this respect, a new scheme has been considered for the inclusive production of D mesons at large p in hadronic collisions in the framework of perturbative fragmentation functions, allowing an analysis at the Next to Leading Order (NLO) level which goes beyond the fixed I(s3) perturbative theory of open charm production. We have applied HEMAS-DPM to the calculation of the prompt muon component for Eμ ≥ 1 TeV in air showers considering the two extreme cases of primary protons and Fe nuclei.  相似文献   

10.
We present a short general overview of the main features of exotic models of neutron stars, focusing on the structural and dynamical predictions derived from them. In particular, we discuss the presence of “normal” quark matter and Color-Flavor Locked (CFL) states, including their possible self-bound versions, and mention some different proposals emerging from the study of QCD microphysics. A connection with actual observed data is the main goal to be addressed at this talk and along the meeting. It is demonstrated that exotic equations of state are not soft if the vacuum contributions are large enough, and argued that recent measurements of high pulsar masses (M≥2M ) create problems for hadronic models in which hyperons should be present. The author would like to acknowledge the financial support of CNPq (Brazil).  相似文献   

11.
In this paper the information loss for fermionic superstrings “superstring balls” in mini black holes at LHC by extending the Gottesman and Preskill method to string theory and calculate the information transformation from the collapsing matter to the state of outgoing Hawking radiation is calculated. It is found that for all finite values of ω n , all information from all string emission processes experiences some degree of loss. It means that the string model is not sufficient to solve the information-loss problem. Then the fermionic superstring states at corresponding point are considered. The correspondence principle offered a unique opportunity to test the Horowitz and Maldacena mechanism at correspondence point “the centre of mass energies around (M s /(g s )2)”. To consider the super string states, a copy of the original Hilbert space is constructed with a set of operators of creation/annihilation that have the same anticommutation properties as the original ones. The total Hilbert space is the tensor product of the two spaces H physical ?H unphysical , where in this case H physical denotes the physical quantum states space of the fermionic string. It is shown that fermionic string states can be represented by a maximally entangled two-mode squeezed state of the physical and unphysical spaces of fermionic string. Also, the entropy for these string states is calculated. It is observed that black hole entropy matches the fermionic superstring entropy at transition point. This means that our result is consistent with correspondence principle and thus HM mechanism in string theory works. Finally the signature of fermionic string ball at LHC is studied. When superstring balls produce at LHC, they evaporate to Massive particles like Higgs boson. In fact string balls act as a factory for Higgs production. Then Higgs bosons decay to QCD matter. Thus an enhancement of QCD matter can be a signature of fermionic superstring ball at LHC.  相似文献   

12.
The measurement of the gravitational properties of antimatter is currently a hot research area in experimental physics. Using an outcome of QED calculations by Alves et al. (arXiv:0907.4110, 2009), this letter proves that QED and repulsive gravity are incompatible by showing that an extension of QED with the assumption of negative gravitational mass for antimatter yields a concrete prediction that is already falsified by the recent Eöt-Wash experiments: if repulsive gravity, and thus negative gravitational mass, would be observed by any of the upcoming experiments, then QED is thus experimentally falsified; the same goes for QCD. An immediate consequence is that virtual particle-antiparticle pairs from contemporary quantum theory cannot be a model for Hajdukovic’s virtual gravitational dipoles, nor for the dipolar medium of Blanchet and Le Tiec. There may be ways to reformulate quantum theory to restore consistency with experiment if repulsive gravity would be observed, but these involve a departure from the framework of four dimensions and four forces of nature: an observation of repulsive gravity would thus provide a reason to reject the quantum paradigm in its entirety and to search for new fundamental physics.  相似文献   

13.
A meteorite impact capable of creating a 200 km diameter crater can demagnetize the entire crust beneath, and produce an appreciable magnetic anomaly at satellite altitudes of ~400 km in case the pre-existing crust is magnetized. In this study we examine the magnetic field over all of the craters and impact-related Quasi-Circular Depressions (QCDs) with diameters larger than 200 km that are located on the highlands of Mars, excluding the Tharsis bulge, in order to estimate the mean magnetization of the highland crust. Using the surface topography and the gravity of Mars we first identify those QCDs that are likely produced by impacts. The magnetic map of a given crater or impact-related QCD is derived using the Mars Global Surveyor high-altitude nighttime radial magnetic data. Two extended ancient areas are identified on the highlands, the South Province and the Tempe Terra, which have large number of craters and impact-related QCDs but none of them has an appreciable magnetic signature. The primordial crust of these areas is not magnetized, or is very weakly magnetized at most. We examine some plausible scenarios to explain the weak magnetization of these areas, and conclude that no strong dynamo existed in the first ~100 Myr of Mars’ history when the newly formed primordial crust was cooling below the magnetic blocking temperatures of its minerals.  相似文献   

14.
Y. D. Zhugzdha 《Solar physics》1989,124(2):205-209
The properties of five-minute temperature waves in the photosphere are investigated. The phase and amplitude relations of temperature and acoustic waves are deduced. It is expected that the five-minute oscillations represent a mixture of acoustic and temperature waves. The temperature waves are generated due to linear interaction with acoustic waves.It is well known that concurrent with the acoustic waves, temperature or heat waves can appear in the case of nonadiabatic disturbances (Landau and Lifshitz, 1959). The temperature waves are dissipative damped waves. Propagation of nonadiabatic hydrodynamic waves in a stratified medium have been considered by Zhugzdha (1983). If stratification of heat exchange exists, a linear interaction of hydrodynamic and temperature waves arises. The temperature waves must be present in the solar atmosphere.  相似文献   

15.
We have used temperature data obtained from radiosondes and rocketsondes for the time interval 1965–1981 to estimate the interconnection of mean-annual temperature fluctuations at the various layers from the surface to the lower mesosphere of the Northern Hemisphere. Profiles of coefficients of correlation of the mean-annual temperature at each layer with mean-annual temperature at higher layers are shown for locations in the low, middle, and high latitudes. It is suggested that the mean-annual temperature variations at high latitudes of the troposphere are related with mean-annual temperature variations of the high latitudes of the lower stratosphere. Also, the mean-annual temperature variations at the high latitudes of the lower stratosphere are connected with mean-annual temperature variations at the high latitudes of the upper stratosphere. Furthermore, the mean-annual temperature variations of the upper stratosphere have an impressive correlation with mean-annual temperature variations of the lower mesosphere for whole northern hemisphere.  相似文献   

16.
Continuous temperature logs to depths between 750 and 1400 m in the Transylvanian Basin, Romania, in many cases show temperature gradient variations with depth which cannot be explained by depth variations in thermal conductivity, topography and ground water flow. The only possible responsible agent seems to be past surface temperature variations. The temperature logs from nine boreholes have been interpreted individually and jointly by least squares inverse modelling with the surface temperature history and background heat flux as unknown parameters. All the temperature profiles are consistent with a temperature rise at the end of the last glaciation. The effects of borehole depth, of a wrong choice of thermal conductivity, and the level of uncorrelated random noise were examined using synthetic examples.  相似文献   

17.
In this article,we present detailed seasonal,monthly and daily statistics of temperature difference in the surface layer at the Muztagh-ata site based on the temperature measurements at two heights of 2 m and6 m.We find that temperature inversion occurs frequently at our site during nighttime,especially during the cold season.Strong temperature inversion always represents stable atmospheric turbulence,which is crucial for an optical observatory.By analyzing the behavior of temperature inversion and its correlation with wind and cloud amount,one conclusion can be made that radiation inversion is the main reason for the existence of temperature inversion in the surface-layer at the Muztagh-ata site.  相似文献   

18.
The presence of convective and turbulent motions, and the evolution of magnetic fields give rise to existence of temperature fluctuations in stellar atmospheres, active galactic nuclei and other cosmic objects. We observe the time and surface averaged radiation fluxes from these objects. These fluxes depend on both the mean temperature and averaged temperature fluctuations. The usual photosphere models do not take into account the temperature fluctuations and use only the distribution of the mean temperature into surface layers of stars. We investigate how the temperature fluctuations change the spectra in continuum assuming that the degree of fluctuations (the ratio of mean temperature fluctuation to the mean temperature) is small. We suggest the procedure of calculation of continuum spectra, which takes into account the temperature fluctuations. As a first step one uses the usual model of a photosphere without fluctuations. The observed spectrum is presented as a part depending on mean temperature and the additional part proportional to quadratic value of fluctuation degree. It is shown that for some forms of absorption factor the additional part in Wien’s region of spectrum can be evaluated directly from observed spectrum. This part depends on the first and second wavelength derivatives, which can be calculated numerically from the observed spectrum. Our estimates show that the temperature dependence of absorption factors is very important by calculation of continuum spectra corrections. As the examples we present the estimates for a few stars from Pulkovo spectrophotometric catalog and for the Sun. The influence of temperature fluctuations on color indices of observed cosmic objects is also investigated.  相似文献   

19.
Satellites in almost circular paths experience appreciable drag throughout the entire orbit; the localised effect being intrinsically related to the global distribution of exospheric temperature. To normalise the density values derived from such orbits to a fixed temperature, an effective exospheric temperature is required. In this paper a “pseudo” exospheric temperature is determined analytically such that, by assuming the atmosphere is held constant at this temperature, the same perturbation in the semi-major axis is achieved as that by a satellite moving in an atmosphere exhibiting a realistic approximant to the measured diurnal variation in temperature. The theory is applied to data and densities derived from orbital analysis of Skylab 1 and the course of the semi-annual variation is retraced for 1974–1976.  相似文献   

20.
Lijie Han  Adam P. Showman 《Icarus》2010,207(2):834-505
We performed 2D numerical simulations of oscillatory tidal flexing to study the interrelationship between tidal dissipation (calculated using the Maxwell model) and a heterogeneous temperature structure in Europa’s ice shell. Our 2D simulations show that, if the temperature is spatially uniform, the tidal dissipation rate peaks when the Maxwell time is close to the tidal period, consistent with previous studies. The tidal dissipation rate in a convective plume encased in a different background temperature depends on both the plume and background temperature. At a fixed background temperature, the dissipation increases strongly with plume temperature at low temperatures, peaks, and then decreases with temperature near the melting point when a melting-temperature viscosity of 1013 Pa s is used; however, the peak occurs at significantly higher temperature in this heterogeneous case than in a homogeneous medium for equivalent rheology. For constant plume temperature, the dissipation rate in a plume decreases as the surrounding temperature increases; plumes that are warmer than their surroundings can exhibit enhanced heating not only relative to their surroundings but relative to the Maxwell-model prediction for a homogeneous medium at the plume temperature. These results have important implications for thermal feedbacks in Europa’s ice shell.To self-consistently determine how convection interacts with tidal heating that is correctly calculated from the time-evolving heterogeneous temperature field, we coupled viscoelastic simulations of oscillatory tidal flexing (using Tekton) to long-term simulations of the convective evolution (using ConMan). Our simulations show that the tidal dissipation rate resulting from heterogeneous temperature can have a strong impact on thermal convection in Europa’s ice shell. Temperatures within upwelling plumes are greatly enhanced and can reach the melting temperature under plausible tidal-flexing amplitude for Europa. A pre-existing fracture zone (at least 6 km deep) promotes the concentration of tidal dissipation (up to ∼20 times more than that in the surroundings), leading to lithospheric thinning. This supports the idea that spatially variable tidal dissipation could lead locally to high temperatures, partial melting, and play an important role in the formation of ridges, chaos, or other features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号