首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— All solid solar system bodies have been affected by impact to varying degrees, and, thus, magnetic records in these bodies may have been modified by shock events. Shock events may have overprinted all primordial magnetic records in meteorites. Shock metamorphism stages ranging from very little to extreme, when melting takes place, have been identified in meteorites. We are examining the creation and destruction of magnetic remanence associated with shock. In this paper, we develop a preliminary framework for understanding the magnetic properties of fine‐grained Fe particles (20–110 nm), which carry most of the remanent magnetization in lunar samples and, by extension, the kamacite phase in meteorite samples. Initial experiments on shock effects due to a first‐order shock‐induced crystallographic transformation are described. The first characterization of pre‐ and postshock magnetic properties for sized Fe particles and the first characterization of the transformation remanent magnetization (TMRM) associated with the face‐centered‐cubic (fcc) to body‐centered‐cubic (bcc) transformation in fine particle Fe spheres are described. This is equivalent to the 13 GPa transitions in bcc Fe. We show that the TMRM is in the same direction as the ambient magnetic field present during the shock, but is deflected from the field direction by 30–45° and that the remanence intensity is 1–2 orders of magnitude less than expected for thermoremanent magnetization (TRM) acquired during cooling through the Curie temperature. Isothermal remanence acquisition curves (RA) reveal the increasing magnetic hardness due to shock. Magnetic hysteresis loops are used to characterize the particle size and the shock‐induced magnetic anisotropy. Thermal demagnetization experiments describe the probable presence of particle size effects and the effects associated with recovery‐recrystallization due to the annealing that takes place during the thermomagnetic experiment. These observations have implications for paleofield determinations and the recognition of thermal unblocking. A TMRM mechanism could produce a shock overprint in a meteorite and might impart a significant directional feature in an asteroid magnetic signature.  相似文献   

2.
Abstract— High‐performance liquid chromatography (HPLC) based amino acid analysis of a Tagish Lake meteorite sample recovered 3 months after the meteorite fell to Earth have revealed that the amino acid composition of Tagish Lake is strikingly different from that of the CM and CI carbonaceous chondrites. We found that the Tagish Lake meteorite contains only trace levels of amino acids (total abundance = 880 ppb), which is much lower than the total abundance of amino acids in the CI Orgueil (4100 ppb) and the CM Murchison (16 900 ppb). Because most of the same amino acids found in the Tagish Lake meteorite are also present in the Tagish Lake ice melt water, we conclude that the amino acids detected in the meteorite are terrestrial contamination. We found that the exposure of a sample of Murchison to cold water lead to a substantial reduction over a period of several weeks in the amount of amino acids that are not strongly bound to the meteorite matrix. However, strongly bound amino acids that are extracted by direct HCl hydrolysis are not affected by the leaching process. Thus even if there had been leaching of amino acids from our Tagish Lake meteorite sample during its 3 month residence in Tagish Lake ice and melt water, a Murchison type abundance of endogenous amino acids in the meteorite would have still been readily detectable. The low amino acid content of Tagish Lake indicates that this meteorite originated from a different type of parent body than the CM and CI chondrites. The parent body was apparently devoid of the reagents such as aldehyldes/ketones, HCN and ammonia needed for the effective abiotic synthesis of amino acids. Based on reflectance spectral measurements, Tagish Lake has been associated with P‐ or D‐type asteroids. If the Tagish Lake meteorite was indeed derived from these types of parent bodies, our understanding of these primitive asteroids needs to be reevaluated with respect to their potential inventory of biologically important organic compounds.  相似文献   

3.
The abundances, distributions, enantiomeric ratios, and carbon isotopic compositions of amino acids in two fragments of the Aguas Zarcas CM2 type carbonaceous chondrite fall and a fragment of the CM2 Murchison meteorite were determined via liquid chromatography time‐of‐flight mass spectrometry and gas chromatography isotope ratio mass spectrometry. A suite of two‐ to six‐carbon aliphatic primary amino acids was identified in the Aguas Zarcas and Murchison meteorites with abundances ranging from ~0.1 to 158 nmol/g. The high relative abundances of α‐amino acids found in these meteorites are consistent with a Strecker‐cyanohydrin synthesis on these meteorite parent bodies. Amino acid enantiomeric and carbon isotopic measurements in both fragments of the Aguas Zarcas meteorites indicate that both samples experienced some terrestrial protein amino acid contamination after their fall to Earth. In contrast, similar measurements of alanine in Murchison revealed that this common protein amino acid was both racemic (D ≈ L) and heavily enriched in 13C, indicating no measurable terrestrial alanine contamination of this meteorite. Carbon isotope measurements of two rare non‐proteinogenic amino acids in the Aguas Zarcas and Murchison meteorites, α‐aminoisobutyric acid and D‐ and L‐isovaline, also fall well outside the typical terrestrial range, confirming they are extraterrestrial in origin. The detections of non‐terrestrial L‐isovaline excesses of ~10–15% in both the Aguas Zarcas and Murchison meteorites, and non‐terrestrial L‐glutamic acid excesses in Murchison of ~16–40% are consistent with preferential enrichment of circularly polarized light generated L‐amino acid excesses of conglomerate enantiopure crystals during parent body aqueous alteration and provide evidence of an early solar system formation bias toward L‐amino acids prior to the origin of life.  相似文献   

4.
We determined the abundances and enantiomeric compositions of amino acids in Sutter's Mill fragment #2 (designated SM2) recovered prior to heavy rains that fell April 25–26, 2012, and two other meteorite fragments, SM12 and SM51, that were recovered postrain. We also determined the abundance, enantiomeric, and isotopic compositions of amino acids in soil from the recovery site of fragment SM51. The three meteorite stones experienced terrestrial amino acid contamination, as evidenced by the low d/l ratios of several proteinogenic amino acids. The d/l ratios were higher in SM2 than in SM12 and SM51, consistent with rain introducing additional l‐ amino acid contaminants to SM12 and SM51. Higher percentages of glycine, β‐alanine, and γ‐amino‐n‐butyric acid were observed in free form in SM2 and SM51 compared with the soil, suggesting that these free amino acids may be indigenous. Trace levels of d +l‐ β‐aminoisobutyric acid (β‐AIB) observed in all three meteorites are not easily explained as terrestrial contamination, as β‐AIB is rare on Earth and was not detected in the soil. Bulk carbon and nitrogen and isotopic ratios of the SM samples and the soil also indicate terrestrial contamination, as does compound‐specific isotopic analysis of the amino acids in the soil. The amino acid abundances in SM2, the most pristine SM meteorite analyzed here, are approximately 20‐fold lower than in the Murchison CM2 carbonaceous chondrite. This may be due to thermal metamorphism in the Sutter's Mill parent body at temperatures greater than observed for other aqueously altered CM2 meteorites.  相似文献   

5.
Abstract– Two new fragments of the Almahata Sitta meteorite and a sample of sand from the related strewn field in the Nubian Desert, Sudan, were analyzed for two to six carbon aliphatic primary amino acids by ultrahigh performance liquid chromatography with UV‐fluorescence detection and time‐of‐flight mass spectrometry (LC‐FT/ToF‐MS). The distribution of amino acids in fragment #25, an H5 ordinary chondrite, and fragment #27, a polymict ureilite, were compared with results from the previously analyzed fragment #4, also a polymict ureilite. All three meteorite fragments contain 180–270 parts‐per‐billion (ppb) of amino acids, roughly 1000‐fold lower than the total amino acid abundance of the Murchison carbonaceous chondrite. All of the Almahata Sitta fragments analyzed have amino acid distributions that differ from the Nubian Desert sand, which primarily contains l ‐α‐amino acids. In addition, the meteorites contain several amino acids that were not detected in the sand, indicating that many of the amino acids are extraterrestrial in origin. Despite their petrological differences, meteorite fragments #25 and #27 contain similar amino acid compositions; however, the distribution of amino acids in fragment #27 was distinct from those in fragment #4, even though both are polymict ureilites from the same parent body. Unlike in CM2 and CR2/3 meteorites, there are low relative abundances of α‐amino acids in the Almahata Sitta meteorite fragments, which suggest that Strecker‐type chemistry was not a significant amino acid formation mechanism. Given the high temperatures that asteroid 2008 TC3 appears to have experienced and lack of evidence for aqueous alteration on the asteroid, it is possible that the extraterrestrial amino acids detected in Almahata Sitta were formed by Fischer‐Tropsch/Haber‐Bosch type gas‐grain reactions at elevated temperatures.  相似文献   

6.
Evaluating the water‐soluble organic composition of carbonaceous chondrites is key to understanding the inventory of organic matter present at the origins of the solar system and the subsequent processes that took place inside asteroid parent bodies. Here, we present a side‐by‐side analysis and comparison of the abundance and molecular distribution of aliphatic amines, aldehydes, ketones, mono‐ and dicarboxylic acids, and free and acid‐releasable cyanide species in the CM2 chondrites Aguas Zarcas and Murchison. The Aguas Zarcas meteorite is a recent fall that occurred in central Costa Rica and constitutes the largest recovered mass of a CM‐type meteorite after Murchison. The overall content of organic species we investigated was systematically higher in Murchison than in Aguas Zarcas. Similar to previous meteoritic organic studies, carboxylic acids were one to two orders of magnitude more abundant than other soluble organic compound classes investigated in both meteorite samples. We did not identify free cyanide in Aguas Zarcas and Murchison; however, cyanide species analyzed after acid digestion of the water‐extracted meteorite mineral matrix were detected and quantified at slightly higher abundances in Aguas Zarcas compared to Murchison. Although there were differences in the total abundances of specific compound classes, these two carbonaceous chondrites showed similar isomeric distributions of aliphatic amines and carboxylic acids, with common traits such as a complete suite of structural isomers that decreases in concentration with increasing molecular weight. These observations agree with their petrologic CM type‐2 classification, suggesting that these meteorites experienced similar organic formation processes and/or conditions during parent body aqueous alteration.  相似文献   

7.
Abstract— Meteorite magnetic records constitute physical evidence of processes acting during early solar system evolution. Consequently, the validation of these records is important in meteorite research. The first step in the validation process should be the REM value. The REM value is the ratio of natural remanence (NRM) to saturation remanent magnetization imparted by a 1 T magnetic field (SIRM). The REM values range over 3 to 4 orders of magnitude for stony meteorites and for chondrules from Allende (C3V‐S1), Bjurböle (L4‐S1), and Chainpur (LL3‐S1) meteorites. The REM values computed from published NRM and SIRM data identify many orders of magnitude range in the REM values including REM values >100 × 10?3. These data suggest a dependence for the NRM intensity on the curatorial location from which the sample was obtained. Any earth rock acquiring thermoremanent magnetization (TRM) in the geomagnetic field has a restricted range in REM mostly between 5 and 50 × 10?3, the exception being the mineral hematite in the multidomain size range. The only terrestrial samples with REM much greater than 100 × 10?3 are those struck by lightning. The REM value provides a physical basis for recognition between valid records and those that “might be contaminated.” The isothermal remanence acquisition (RA) curve is presented as a contamination curve that allows an indication of the level of magnetic field contamination required to give the computed “REM” (RM/SIRM) value. In the case of the Bjurböle and Chainpur chondrules, with REM values >100 × 10?3, the RA curve indicates that unrealistically large contamination magnetic fields would be required to give REM values greater than 100 × 10?3. This would suggest contamination other than by a hand magnet that is normally available to an experimenter. This would require an explanation that would involve large magnetic fields during chondrule formation, or some extraordinary remanence acquisition mechanism that remains to be described. Magnetic contamination experiments, using ~80 and ~40 mT magnets, demonstrate that the “REM” values and extent of modification of the magnetic vector record are mineralogy dependent, and this is mostly related to the amount and characteristics of the mineral tetrataenite. The complexity of the meteorite records suggest validation of the record as a first step. The REM value is the first physical statement that can be made in this validation.  相似文献   

8.
Abstract— Recent discovery of intense magnetic anomalies on Mars, which are due to remanent magnetization, requires some explanation for the possible minerals responsible for the anomalous signature. Thermoremanent magnetization (TRM) in single domain (SD) and multidomain (MD) sized magnetite, hematite, and pyrrhotite, all potential minerals, are considered. The intensity of TRM (in 0.05 mT) is in descending order: SD‐sized magnetite, SD‐sized pyrrhotite, MD‐sized hematite, MD‐sized pyrrhotite, MD‐sized magnetite, SD‐sized hematite. The TRM intensity is <4% of the saturation isothermal remanence (SIRM) for all but the MD hematite, which may have >50% of the SIRM. Each of these minerals and estimated concentrations of magnetic remanence carriers (assumed to be titanomagnetite) in the Shergotty‐Nakhla‐Chassigny martian meteorites are used in a thin sheet approximation model to reveal the concentration of each mineral required for the generation of an observed magnetic anomaly (1500 nT at 100 km altitude) assuming TRM acquisition in a 0.05 mT magnetic field.  相似文献   

9.
To date, the CM2 class of carbonaceous chondrites has provided the most detailed view of organic synthesis in the early solar system. Organic‐rich chondrites actually observed falling to Earth (“Falls”), for example, the Murchison meteorite in 1969, are even more rare. The April 23, 2019 fall of the Aguas Zarcas meteorite is therefore the most significant CM2 fall since Murchison. Samples collected immediately following the fall provide the rare opportunity to analyze its bulk mineralogy and organic inventory relatively free of terrestrial contamination. According to the Meteoritical Bulletin, Aguas Zarcas (“AZ” or “Zarcas”) is dominated by serpentine, similar to other CM2 chondrites. Likewise, our initial analyses of AZ were meant to give a broad view of its soluble organic inventory relative to other carbonaceous chondrites. We observe that while it is rich in hydrocarbons, carboxylic acids, dicarboxylic acids, sugar alcohols, and sugar acids, some of these classes may be of lesser abundance than in the more well known carbonaceous chondrites such as Murchison. Compared generally with other CM2 meteorites, the most significant finding is the absence, or relatively low levels, of three otherwise common constituents: ammonia, amino, acids, and amines. Overall, this meteorite adds to the building database of prebiotic compounds available to the ancient Earth.  相似文献   

10.
Abstract— The Tagish Lake meteorite soluble organic suite has a general composition that differs from those of both CI and CM chondrites. These differences suggest that distinct processes may have been involved in the formation of different groups of organics in meteorites. Tagish Lake alkyl dicarboxylic acids have a varied, abundant distribution and are, with carboxylated pyridines, the only compounds to have an occurrence comparable to that of the Murchison meteorite. This study has undertaken their molecular and isotopic characterization, with the aim to understand their origin and to gain insights into the evolutionary history of the meteorite parent body. Tagish Lake alkyl dicarboxylic acids are present as a homologous series of saturated and unsaturated species with three‐ through ten‐carbon atom chain length. Linear saturated acids are predominant and show decreasing amounts with increasing chain length. A total of 44 of these compounds were detected with the most abundant, succinic acid, present at ?40 nmol/g meteorite. Overall the molecular distribution of Tagish Lake dicarboxylic acids shows a remarkable compound‐to‐compound correspondence with those observed in the Murchison and Murray meteorites. In both Tagish Lake and Murchison, the imides of the more abundant dicarboxylic acids were also observed. The hydrogen and carbon isotopic compositions of individual Tagish Lake dicarboxylic acids were determined and compared to those of the corresponding acids in the Murchison meteorite. All δD and δ13C values for Tagish Lake acids are positive and show a substantial isotopic enrichment. δD values vary from, approximately, +1120%o for succinic acid to +1530%o for methyl glutaric acid. δ13C values ranged from +12.6%o for methyl glutaric acid to +22.9%o for glutaric acid, with adipic acid having a significantly lower value (+5.5%o). Murchison dicarboxylic acid showed similar isotopic values: their δ513C values were generally higher by an average 17% and δD values were lower for succinic and glutaric acids, possibly due to contamination. The molecular and isotopic data collected for these compounds restrict their possible origin to processes, either interstellar or of very cold nebular regions, that produced significant isotopic enrichments. Saturated or partially unsaturated nitriles and dinitriles appear to be good precursor candidates as their hydrolysis, upon water exposure, would produce dicarboxylic acids and other carboxylated species found in Tagish Lake. This evolutionary course could possibly include pre‐accretionary processes.  相似文献   

11.
Lunar samples are magnetic primarily due to the body centered cubic (BBC) iron and ironnickel alloys they contain. Presented for the first time are results which demonstrate that the magnitude of the martensitic thermal remanence (MTRM) induced on quenching iron-nickel alloy in the geomagnetic field depends on the nickel content of the alloy. High magnetic stability is due to the increasing dislocation density and increasingly complex microstructures associated with increasing nickel content in the alloys. The results agree with the mechanical and structural properties of the alloys. The characteristic quench martensite microstructure observed on metallographic examination provides a recognition criterion for the MTRM mechanism. These results are important for lunar and meteoritic research intending to ascertain the paleofield responsible for the observed remanent magnetization.  相似文献   

12.
X‐ray microcomputed tomography (μCT) is a useful means of characterizing cosmochemical samples such as meteorites or robotically returned samples. However, there are occasional concerns that the use of μCT may be detrimental to the organic components of a chondrite. Small organic compounds such as amino acids comprise up to ~10% of the total solvent extractable carbon in CM carbonaceous chondrites. We irradiated three samples of the Murchison CM carbonaceous chondrite under conditions akin to and harsher than those typically used during typical benchtop X‐ray μCT imaging experiments to determine if detectable changes in the amino acid abundance and distribution relative to a nonexposed Murchison control sample occurred. After subjecting three meteorite samples to ionizing radiation dosages between ~300 Gray (Gy) and 3 kGy with bremstrahlung X‐rays, we analyzed the amino acid content of each sample. Within sampling and analytical errors, we cannot discern differences in the amino acid abundances and amino acid enantiomeric ratios when comparing the control samples (nonexposed Murchison) and the irradiated samples. We conclude that a polychromatic X‐ray μCT experiment does not alter the abundances of amino acids to a degree greater than how well those abundances are measured with our techniques and therefore any damage to amino acids is minimal.  相似文献   

13.
It has been proposed that exothermic gas phase polymerization of amino acids can occur in the conditions of a warm dense molecular cloud to form hydrophobic polymer amide (HPA) (McGeoch and McGeoch 2014). In a search for evidence of this presolar chemistry Allende and Murchison meteorites and a volcano control were diamond burr‐etched and Folch extracted for potential HPA yielding 85 unique peaks in the meteorite samples via matrix‐assisted laser desorption time‐of‐flight mass spectrometry (MALDI TOF/MS). The amino acids after acid hydrolysis in Allende were below the level of detection but many of the Allende peaks via the more sensitive MALDI/TOF analysis could be fitted to a polymer combination of glycine, alanine, and alpha‐hydroxyglycine with high statistical significance. A similar significant fit using these three amino acids could not be applied to the Murchison data indicating more complex polymer chemistry.  相似文献   

14.
The CI1 Orgueil meteorite is a highly aqueously altered carbonaceous chondrite. It has been extensively studied, and despite its extensive degree of aqueous alteration and some documented instances of contamination, several indigenous organic compounds including amino acids, carboxylic acids, and nucleobases have been detected in its carbon‐rich matrix. We recently developed a novel gas chromatographic method for the enantiomeric and compound‐specific isotopic analyses of meteoritic aliphatic monoamines in extracts and have now applied this method to investigate the monoamine content in Orgueil. We detected 12 amines in Orgueil, with concentrations ranging from 1.1 to 332 nmol g?1 of meteorite and compared this amine content in Orgueil with that of the CM2 Murchison meteorite, which experienced less parent‐body aqueous alteration. Methylamine is four times more abundant in Orgueil than in Murchison. As with other species, the amine content in Orgueil extracts shows less structural diversity than that in Murchison extracts. We measured the compound‐specific stable carbon isotopic ratios (δ13C) for 5 of the 12 monoamines detected in Orgueil and found a range of δ13C values from –20 to +59‰. These δ13C values fall into the range of other meteoritic organic compounds, although they are 13C‐depleted relative to their counterparts extracted from the Murchison meteorite. In addition, we measured the enantiomeric composition for the chiral monoamines (R)‐ and (S)‐sec‐butylamine in Orgueil, and found it was racemic within experimental error, in contrast with the l ‐enantiomeric excess found for its amino acid structural analog isovaline. The racemic nature of sec‐butylamine in Orgueil was comparable to that previously observed in Murchison, and to other CM2 and CR2 carbonaceous chondrites measured in this work (ALH 83100 [CM1/2], LON 94101 [CM2], LEW 90500 [CM2], LAP 02342 [CR2], and GRA 95229 [CR2]). These results allow us to place some constraints on the effects of aqueous alteration observed over the monoamine concentrations in Orgueil and Murchison, and to evaluate the primordial synthetic relationships between meteoritic monoamines and amino acids.  相似文献   

15.
Abstract— Amino acid analyses of the Antarctic CM2 chondrites Allan Hills (ALH) 83100 and Lewis Cliff (LEW) 90500 using liquid chromatography‐time of flight‐mass spectrometry (LC‐ToF‐MS) coupled with UV fluorescence detection revealed that these carbonaceous meteorites contain a suite of indigenous amino acids not present in Antarctic ice. Several amino acids were detected in ALH 83100, including glycine, alanine, β‐alanine, γ‐amino‐n‐butyric acid (γ‐ABA), and α‐aminoisobutyric acid (AIB) with concentrations ranging from 250 to 340 parts per billion (ppb). In contrast to ALH 83100, the CM2 meteorites LEW 90500 and Murchison had a much higher total abundance of these amino acids (440–3200 ppb). In addition, ALH 83100 was found to have lower abundances of the α‐dialkyl amino acids AIB and isovaline than LEW 90500 and Murchison. There are three possible explanations for the depleted amino acid content in ALH 83100: 1) amino acid leaching from ALH 83100 during exposure to Antarctic ice meltwater, 2) a higher degree of aqueous alteration on the ALH 83100 parent body, or 3) ALH 83100 originated on a chemically distinct parent body from the other two CM2 meteorites. The high relative abundance of ?‐amino‐n‐caproic acid (EACA) in the ALH 83100 meteorite as well as the Antarctic ice indicates that Nylon‐6 contamination from the Antarctic sample storage bags may have occurred during collection.  相似文献   

16.
Abstract— Low molecular weight monocarboxylic acids, including acetic acid, are some of the most abundant organic compounds in carbonaceous chondrites. So far, the 13C‐ and D‐enriched signature of water‐extractable carboxylic acids has implied an interstellar contribution to their origin. However, it also has been proposed that monocarboxylic acids could be formed by aqueous reaction on the meteorite parent body. In this study, we conducted hydrous pyrolysis of macromolecular organic matter purified from the Murchison meteorite (CM2) to examine the generation of monocarboxylic acids with their stable carbon isotope measurement. During hydrous pyrolysis of macromolecular organic matter at 270–330 °C, monocarboxylic acids with carbon numbers ranging from 2 (C2) to 5 (C5) were detected, acetic acid (CH3COOH; C2) being the most abundant. The concentration of the generated acetic acid increased with increasing reaction temperature; up to 0.48 mmol acetic acid/g macromolecular organic matter at 330 °C. This result indicates that the Murchison macromolecule has a potential to generate at least ?0.4 mg acetic acid/g meteorite, which is about four times higher than the amount of water‐extractable acetic acid reported from Murchison. The carbon isotopic composition of acetic acid generated by hydrous pyrolysis of macromolecular organic matter is ?‐27‰ (versus PDB), which is much more depleted in 13C than the water‐extractable acetic acid reported from Murchison. Intramolecular carbon isotope distribution shows that methyl (CH3‐)‐C is more enriched in 13C relative to carboxyl (‐COOH)‐C, indicating a kinetic process for this formation. Although the experimental condition of this study (i.e., 270–330 °C for 72 h) may not simulate a reaction condition on parent bodies of carbonaceous chondrite, it may be possible to generate monocarboxylic acids at lower temperatures for a longer period of time.  相似文献   

17.
We conducted a paleomagnetic study of the matrix of Allende CV3 chondritic meteorite, isolating the matrix's primary remanent magnetization, measuring its magnetic fabric and estimating the ancient magnetic field intensity. A strong planar magnetic fabric was identified; the remanent magnetization of the matrix was aligned within this plane, suggesting a mechanism relating the magnetic fabric and remanence. The intensity of the matrix's remanent magnetization was found to be consistent and low (~6 μT). The primary magnetic mineral was found to be pyrrhotite. Given the thermal history of Allende, we conclude that the remanent magnetization was formed during or after an impact event. Recent mesoscale impact modeling, where chondrules and matrix are resolved, has shown that low‐velocity collisions can generate significant matrix temperatures, as pore‐space compaction attenuates shock energy and dramatically increases the amount of heating. Nonporous chondrules are unaffected, and act as heat‐sinks, so matrix temperature excursions are brief. We extend this work to model Allende, and show that a 1 km/s planar impact generates bulk porosity, matrix porosity, and fabric in our target that match the observed values. Bimodal mixtures of a highly porous matrix and nominally zero‐porosity chondrules make chondrites uniquely capable of recording transient or unstable fields. Targets that have uniform porosity, e.g., terrestrial impact craters, will not record transient or unstable fields. Rather than a core dynamo, it is therefore possible that the origin of the magnetic field in Allende was the impact itself, or a nebula field recorded during transient impact heating.  相似文献   

18.
X‐ray microcomputed tomography and synchrotron X‐ray microcomputed tomography (μCT) are becoming popular tools for the reconnaissance imaging of chondrites. However, there are occasional concerns that the use of μCT may be detrimental to organic components of a chondrite. Soluble organic compounds represent ~2–10% of the total solvent extractable carbon in CI and CM carbonaceous chondrites and amino acids are among the most abundant compounds in the soluble organic fraction. We irradiated two samples of the Murchison CM2 carbonaceous chondrite under conditions slightly harsher (increased beam exposure time) than those typically used for x‐ray μCT imaging experiments to determine if detectable changes in the amino acid abundance and distribution relative to a nonexposed control sample occurred. After subjecting two meteorite portions to ionizing radiation dosages of 1.1 kiloGray (kGy) and 1.2 kGy with 48.6 and 46.6 keV monochromatic X‐rays, respectively, we analyzed the amino acid content of each sample. Within analytical errors, we found no differences in the amino acid abundances or enantiomeric ratios when comparing the control samples (nonexposed Murchison) and the irradiated samples. We show with calculations that any sample heating due to x‐ray exposure is negligible. We conclude that a monochromatic synchrotron X‐ray μCT experiment at beamline 13‐BM‐D of the Advanced Photon Source, which imparts ~1 kGy doses, has no detectable effect on the amino acid content of a carbonaceous chondrite. These results are important for the initial reconnaissance of returned samples from the OSIRIS‐REx and Hayabusa 2 asteroid sample return missions.  相似文献   

19.
Abstract– To better explain the unusual distribution and relative abundances of several 6‐ and 7‐carbon amino acids found in meteorites, their thermodynamic properties were studied using accurate ab initio techniques. In addition to optimized structures and relative energies, vibrational frequency and thermochemical analysis of different diastereomers were performed at temperatures relevant to conditions of synthesis of these amino acids in meteorites. The results of calculations were compared with the measured content of the amino acids in the Murchison meteorite. The distribution of several longer chain amino acids in meteorites seems to point to at least some thermodynamic control in their formation. For diastereomeric compounds, on the other hand, the comparison suggests that their synthetic conditions, or those of their precursors, were far from thermodynamic equilibrium.  相似文献   

20.
Abstract— Results of a detailed paleomagnetic and rock magnetic study of samples of the impact breccia sequence cored in the Yaxcopoil‐1 (Yax‐1) borehole between about 800 m and 896 m are presented. The Yax‐1 breccia sequence occurs from 794.63 m to 894.94 m and consists of redeposited melt‐rich, clast‐size sorted, fine‐grained suevites; melt‐rich, no clast‐size sorting, medium‐grained suevites; coarse suevitic melt agglomerates; coarse melt‐rich heterogeneous suevites; brecciated suevites; and coarse carbonate and silicate melt suevites. The low‐field susceptibility ranges from ?0.3 to 4018 times 10?6 SI, and the NRM intensity ranges from 0.02 mA/m up to 37510 mA/m. In general, the NRM intensity and magnetic susceptibility present wide ranges and are positively correlated, pointing to varying magnetic mineral contents and textures of the melt‐rich breccia sequence. The vectorial composition and magnetic stability of NRM were investigated by both stepwise alternating field and thermal demagnetization. In most cases, characteristic single component magnetizations are observed. Both upward and downward inclinations are present through the sequence, and we interpret the reverse magnetization as the primary component in the breccias. Both the clasts and matrix forming the breccia appear to have been subjected to a wide range of temperature/pressure conditions and show distinct rock magnetic properties. An extended interval of remanence acquisition and secondary partial or total remagnetization may explain the paleomagnetic results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号