首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two simple and efficient numerical methods to explore the phase space structure are presented, based on the properties of the "dynamical spectra". 1) We calculate a "spectral distance" D of the dynamical spectra for two different initial deviation vectors. D → 0 in the case of chaotic orbits, while D → const ≠ 0 in the case of ordered orbits. This method is by orders of magnitude faster than the method of the Lyapunov Characteristic Number (LCN). 2) We define a sensitive indicator called ROTOR (ROtational TOri Recongnizer) for 2D maps. The ROTOR remains zero in time on a rotational torus, while it tends to infinity at a rate ∝ N = number of iterations, in any case other than a rotational torus. We use this method to locate the last KAM torus of an island of stability, as well as the most important cantori causing stickiness near it. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Stickiness is a temporary confinement of orbits in a particular region of the phase space before they diffuse to a larger region. In a system of 2-degrees of freedom there are two main types of stickiness (a) stickiness around an island of stability, which is surrounded by cantori with small holes, and (b) stickiness close to the unstable asymptotic curves of unstable periodic orbits, that extend to large distances in the chaotic sea. We consider various factors that affect the time scale of stickiness due to cantori. The overall stickiness (stickiness of the second type) is maximum near the unstable asymptotic curves. An important application of stickiness is in the outer spiral arms of strong-barred spiral galaxies. These spiral arms consist mainly of sticky chaotic orbits. Such orbits may escape to large distances, or to infinity, but because of stickiness they support the spiral arms for very long times.  相似文献   

3.
We consider the possibility of particles being injected at the interior of a reconnecting current sheet (RCS), and study their orbits by dynamical systems methods. As an example we consider orbits in a 3D Harris type RCS. We find that, despite the presence of a strong electric field, a 'mirror' trapping effect persists, to a certain extent, for orbits with appropriate initial conditions within the sheet. The mirror effect is stronger for electrons than for protons. In summary, three types of orbits are distinguished: (i) chaotic orbits leading to escape by stochastic acceleration, (ii) regular orbits leading to escape along the field lines of the reconnecting magnetic component, and (iii) mirror-type regular orbits that are trapped in the sheet, making mirror oscillations. Dynamically, the latter orbits lie on a set of invariant KAM tori that occupy a considerable amount of the phase space of the motion of the particles. We also observe the phenomenon of 'stickiness', namely chaotic orbits that remain trapped in the sheet for a considerable time. A trapping domain, related to the boundary of mirror motions in velocity space, is calculated analytically. Analytical formulae are derived for the kinetic energy gain in regular or chaotic escaping orbits. The analytical results are compared with numerical simulations.  相似文献   

4.
We present results of a study of the so-called “stickiness” regions where orbits in mappings and dynamical systems stay for very long times near an island and then escape to the surrounding chaotic region. First we investigated the standard map in the form xi+1 = xi+yi+1 and yi+1 = yi+K/2π · sin(2πxi) with a stochasticity parameter K = 5, where only two islands of regular motion survive. We checked now many consecutive points—for special initial conditions of the mapping—stay within a certain region around the island. For an orbit on an invariant curve all the points remain forever inside this region, but outside the “last invariant curve” this number changes significantly even for very small changes in the initial conditions. In our study we found out that there exist two regions of “sticky” orbits around the invariant curves: A small region I confined by Cantori with small holes and an extended region II is outside these cantori which has an interesting fractal character. Investigating also the Sitnikov-Problem where two equally massive primary bodies move on elliptical Keplerian orbits, and a third massless body oscillates through the barycentre of the two primaries perpendicularly to the plane of the primaries—a similar behaviour of the stickiness region was found. Although no clearly defined border between the two stickiness regions was found in the latter problem the fractal character of the outer region was confirmed.  相似文献   

5.
In a previous paper (Voglis et al., Paper I), we demonstrated that, in a rotating galaxy with a strong bar, the unstable asymptotic manifolds of the short-period family of unstable periodic orbits around the Lagrangian points L 1 or L 2 create correlations among the apocentric positions of many chaotic orbits, thus supporting a spiral structure beyond the bar. In this paper, we present evidence that the unstable manifolds of all the families of unstable periodic orbits near and beyond corotation contribute to the same phenomenon. Our results refer to a N -body simulation, a number of drawbacks of which, as well as the reasons why these do not significantly affect the main results, are discussed. We explain the dynamical importance of the invariant manifolds as due to the fact that they produce a phenomenon of 'stickiness' slowing down the rate of chaotic escape in an otherwise non-compact region of the phase space. We find a stickiness time of the order of 100 dynamical periods, which is sufficient to support a long-living spiral structure. Manifolds of different families become important at different ranges of values of the Jacobi constant. The projections of the manifolds of all the different families in the configuration space produce a pattern due to the 'coalescence' of the invariant manifolds. This follows closely the maxima of the observed   m = 2  component near and beyond corotation. Thus, the manifolds support both the outer edge of the bar and the spiral arms.  相似文献   

6.
We apply the theory of the third integral to a self-consistent galactic model, generated by the collapse of a N-body system. The final configuration after the collapse is a stationary triaxial system, that represents an almost prolate non-rotating elliptical galaxy with its longest axis in the z-direction. This system is represented by an axisymmetric potential V plus a small triaxial perturbation V 1. The orbits in the potential V are of three types: box orbits, tube orbits (corresponding to various resonances), and chaotic orbits.The intersections of the box and tube orbits by a Poincaré surface of section z=0 are closed invariant curves. The main tube orbits are like ellipses and form an island of stability on the (R,R) plane.We calculated the third integral I in the potential V for the general non-resonant case and for various resonant cases. The agreement between the invariant curves of the orbits and the level curves of the third integral is good for the box and tube orbits, if we truncate the third integral at an appropriate level. As expected the third integral fails in the case of chaotic orbits. The most important result is the form of the number density F on the Poincaré surface of section. This function decreases exponentially outwards for the box orbits, like Fexp(–bI), while it is constant, as expected, for the chaotic orbits. In the case of the island of the main tube orbits it has a minimum at the center of the island. This can be explained by the form of the near elliptical orbits that are elongated along R, thus they fail to support a self-consistent galaxy, which is elongated along the z-axis.  相似文献   

7.
Spiral galaxies contain both ordered and chaotic orbits. In normal spirals the perturbations are weak (of order 2–10%) and most orbits are ordered. The density wave theory refers mainly to linear perturbations. Nonlinear effects appear in the outer parts of the open spirals (S_b, S_c) and produce the termination of these spirals near the 4/1 resonance. On the other hand in barred spirals the perturbations are relatively strong (of order 100%). Then the outer spirals and the envelope of the bar are composed mainly of chaotic orbits, while the main body of the bar is composed of ordered orbits. The chaotic orbits of the spiral arms of strong barred galaxies are sticky, i.e. they do not escape from the galaxy for at least a Hubble time. The forms of these spirals are delineated by the unstable manifolds of the unstable periodic orbits L_1, L_2 near the ends of the bar and of other unstable periodic orbits inside and outside corotation.  相似文献   

8.
We study the existence, linear stability and bifurcations of what we call the Sitnikov family of straight line periodic orbits in the case of the restricted four-body problem, where the three equal mass primary bodies are rotating on a circle and the fourth (small body) is moving in the direction vertical to the center mass of the other three. In contrast to the restricted three-body Sitnikov problem, where the Sitnikov family has infinitely many stability intervals (hence infinitely many Sitnikov critical orbits), as the “family parameter” ż0 varies within a finite interval (while z 0 tends to infinity), in the four-body problem this family has only one stability interval and only twelve 3-dimensional (3D) families of symmetric periodic orbits exist which bifurcate from twelve corresponding critical Sitnikov periodic orbits. We also calculate the evolution of the characteristic curves of these 3D branch-families and determine their stability. More importantly, we study the phase space dynamics in the vicinity of these orbits in two ways: First, we use the SALI index to investigate the extent of bounded motion of the small particle off the z-axis along its interval of stable Sitnikov orbits, and secondly, through suitably chosen Poincaré maps, we chart the motion near one of the 3D families of plane-symmetric periodic orbits. Our study reveals in both cases a fascinating structure of ordered motion surrounded by “sticky” and chaotic orbits as well as orbits which rapidly escape to infinity.  相似文献   

9.
We study the periodic orbits and the escapes in two different dynamical systems, namely (1) a classical system of two coupled oscillators, and (2) the Manko-Novikov metric which is a perturbation of the Kerr metric (a general relativistic system). We find their simple periodic orbits, their characteristics and their stability. Then we find their ordered and chaotic domains. As the energy goes beyond the escape energy, most chaotic orbits escape. In the first case we consider escapes to infinity, while in the second case we emphasize escapes to the central ??bumpy?? black hole. When the energy reaches its escape value, a particular family of periodic orbits reaches an infinite period and then the family disappears (the orbit escapes). As this family approaches termination it undergoes an infinity of equal period and double period bifurcations at transitions from stability to instability and vice versa. The bifurcating families continue to exist beyond the escape energy. We study the forms of the phase space for various energies, and the statistics of the chaotic and escaping orbits. The proportion of these orbits increases abruptly as the energy goes beyond the escape energy.  相似文献   

10.
The stability of hierarchical triple system is studied in the case of an extrasolar planet or a brown dwarf orbiting a pair of main sequence stars. The evolution of triple system is well modelled by random walk (RW) diffusion, particularly in the cases where the third body is small and tracing an orbit with a large eccentricity. A RW model neglects the fact that there are many periodic orbits accompanied by stability islands, and hence inherently overestimates the instability of the system. The present work is motivated by the hope to clarify how far the RW model is applicable. Escape time and the surface section technique are used to analyse the outcome of numerical integrations. The analysis shows that the RW-like model explains escape of the third body if the initial configuration is directly outside of the KAM tori. A small gap exists in (q 2/a 1, e 2)-plane between locations of the stability limit curves based on our numerical study and on RW-model (the former is shifted by –1.4 in q 2/a 1 direction from the latter).  相似文献   

11.
We study the kinematic properties of stars under the combined potential of a Kuzmin disk with a simple radial oscillation and a logarithmic halo. The results are: 1) There exist stable, ordered and near-circular orbits. 2) The effect of the oscillating disk is greater on orbits with smaller angular momenta and on that departly greatly from the near-circular orbits. 3) Most of the motion in the disk is ordered motion. 4) Orbits that depart greatly from the near-circular orbits generally have chaotic motion and may eventually escape. But the actual fraction escaped in one Hubble time is small. 5) Disk oscillation may be one of the mechanisms for the formation and long-term maintenance of some star clusters; the larger the amplitude, the greater may be the number of clusters; for a given disk galaxy, there may be more clusters with small than with large angular momenta.  相似文献   

12.
13.
The behavior of the orbits in a galaxy model composed of an harmonic core and a strong bar potential is studied. Numerical calculations show that a large number of orbits display chaotic motion. These orbits are low angular momentun orbits. The percentage of chaotic orbits increases as the angular velocity of the system increases or the strength of the harmonic term decreases. A new dynamical parameter, the S(c) spectrum, is introduced and used to detect the island motion and the evolution of the sticky regions. Comparison to previously obtained results reveals the leading role of the new spectrum. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Fixed points and eigencurves have been studied for the Hénon-Heiles mapping:x′=x+a (y?y 3),y′=y(x′?x′ 3). Eigencurves of order 21 proceed rapidly to infinity fora=1.78, but as ‘a’ decreases, they spiral around the origin repeatedly before escaping to infinity. Fixed pointsx f on thex-axis have been located for the range 1≤a≤2.4, for ordersn up to 100. Their locations vary continuously witha, as do the eigencurves, and hyperbolic points remain hyperbolic. Forn=3 and 2.4≥a≥2.37, a very detailed study has been made of how escape occurs, with segments of an eigencurve mapping to infinity through various escape channels. Further calculations with ‘a’ decreasing to 2.275 show that this instability is preserved and that the eigencurve will spiral many times around the origin before reaching an escape channel, there being more than 34 turns fora=2.28. The rapid increase of this number is associated with the rapid decrease of the intersection angle between forward and backward eigencurves (at the middle homoclinic point), with decreasing ‘a’, this angle governing the outward motion. By a semi-topological argument, it is shown that escape must occur if the above intersection angle is nonzero. In the absence of a theoretical expression for this angle, one is forced to rely on the numerical evidence. If the angle should attain zero for a valuea=a c>am,wherea m .is the minimum value for which the fixed points exist, then no escape would be possible fora c However, on the basis of calculations by Jenkins and Bartlett (1972) forn=6, and the results of the present article forn=3, it appears highly probable thata c=am,and that escape from the neighborhood of a hyperbolic point is always possible. If there is escape from the hyperbolic fixed point forn=4,a=1.6, located atx f=0.268, then the eigencurve must cross the apparently closed invariant curve of Hénon-Heiles which intersects thex-axis atx?±0.4, so that this curve cannot in fact be closed.  相似文献   

15.
With the standard map model, we study the stickiness effect of invariant tori, particularly the role of hyperbolic sets in this effect. The diffusion of orbits originated from the neighborhoods of hyperbolic points, periodic islands and torus is studied. We find that they possess similar diffusion rules, but the diffusion of orbits originated from the neighborhood of a torus is faster than that originated near a hyperbolic set. The numerical results show that an orbit in the neighborhood of a torus spends most of time around hyperbolic invariant sets. We also calculate the areas of islands with different periods. The decay of areas with the periods obeys a power law, and the absolute values of the exponents increase monotonously with the perturbation parameter. According to the results obtained, we conclude that the stickiness effect of tori is caused mainly by the hyperbolic invariant sets near the tori, and the diffusion speed becomes larger when orbits diffuse away from the torus.  相似文献   

16.
It has recently been shown that Jupiter Trojans may exhibit chaotic behavior, a fact that has put in question their presumed long term stability. Previous numerical results suggest a slow dispersion of the Trojan swarms, but the extent of the ‘effective’ stability region in orbital elements space is still an open problem. In this paper, we tackle this problem by means of extensive numerical integrations. First, a set of 3,200 fictitious objects and 667 numbered Trojans is integrated for 4 Myrs and their Lyapunov time, TL, is estimated. The ones following chaotic orbits are then integrated for 1 Gyr, or until they escape from the Trojan region. The results of these experiments are presented in the form of maps of TLand the escape time, TE, in the space of proper elements. An effective stability region for 1 Gyr is defined on these maps, in which chaotic orbits also exist. The distribution of the numbered Trojans follows closely the TE=1 Gyr level curve, with 86% of the bodies lying inside and 14% outside the stability region. This result is confirmed by a 4.5 Gyr integration of the 246 chaotic numbered Trojans, which showed that 17% of the numbered Trojans are unstable over the age of the solar system. We show that the size distributions of the stable and unstable populations are nearly identical. Thus, the existence of unstable bodies should not be the result of a size-dependent transport mechanism but, rather, the result of chaotic diffusion. Finally, in the large chaotic region that surrounds the stability zone, a statistical correlation between TLandTE is found.  相似文献   

17.
We investigate the orbital diffusion and the stickiness effects in the phase space of a 3-dimensional volume preserving mapping. We first briefly review the main results about the stickiness effects in 2-dimensional mappings. Then we extend this study to the 3-dimensional case, studying for the first time the behavior of orbits wandering in the 3-dimensional phase space and analyzing the role played by the hyperbolic invariant sets during the diffusion process. Our numerical results show that an orbit initially close to a set of invariant tori stays for very long times around the hyperbolic invariant sets near the tori. Orbits starting from the vicinity of invariant tori or from hyperbolic invariant sets have the same diffusion rule. These results indicate that the hyperbolic invariant sets play an essential role in the stickiness effects. The volume of phase space surrounded by an invariant torus and its variation with respect to the perturbation parameter influences the stickiness effects as well as the development of the hyperbolic invariant sets. Our calculations show that this volume decreases exponentially with the perturbation parameter and that it shrinks down with the period very fast.  相似文献   

18.
The stability of the motion of a hypothetical planet in the binary system ?? Cen A?CB has been investigated. The analysis has been performed within the framework of a planar (restricted and full) three-body problem for the case of prograde orbits. Based on a representative set of initial data, we have obtained the Lyapunov spectra of the motion of a triple system with a single planet. Chaotic domains have been identified in the pericenter distance-eccentricity plane of initial conditions for the planet through a statistical analysis of the data obtained. We have studied the correspondence of these chaotic domains to the domains of initial conditions that lead to the planet??s encounter with one of the binary??s stars or to the escape of the planet from the system. We show that the stability criterion based on the maximum Lyapunov exponent gives a more clear-cut boundary of the instability domains than does the encounterescape criterion at the same integration time. The typical Lyapunov time of chaotic motion is ??500 yr for unstable outer orbits and ??60 yr for unstable inner ones. The domain of chaos expands significantly as the initial orbital eccentricity of the planet increases. The chaos-order boundary has a fractal structure due to the presence of orbital resonances.  相似文献   

19.
The present paper addresses the existence of J 2 invariant relative orbits with arbitrary relative magnitude over the infinite time using the Routh reduction and Poincaré techniques in the J 2 Hamiltonian problem. The current research also proposes a novel numerical searching approach for J 2 invariant relative orbits from the dynamical system point of view. A new type of Poincaré mapping is defined from different central manifolds of the pseudo-circular orbits (parameterized by the Jacobi energy E, the polar component of momentum H z and the measure of distance Δr between the fixed point and its central manifolds) to the nodal periods T d and the drifts of longitude of the ascending node during one period (ΔΩ), which differs from Koon et al.’s (AIAA 2001) definition on central manifolds parameterized by the same fixed point. The Poincaré mapping is surjective because it compresses the three-dimensional variables into two-dimensional images, and the mapping degenerates into a bijective mapping in consideration of the fixed points. An iteration algorithm to the degenerated bijective mapping is proposed from the continuation procedure to perform the ergodic representation of E- and H z -contour maps on the space of T d –ΔΩ. For the surjective mapping with Δr ≠ 0, different pseudo-circular or elliptical orbits may share the same images. Hence, the inverse surjective mapping may achieve non-unique variables from a single image, which makes the generation of J 2 invariant relative orbits possible. The pseudo-circular or elliptical orbits generated from the surjective mapping will be defined in different meridian planes. Hence, the critical contribution of the present paper is the assignment of J 2 invariant relative orbits to different invariant parameters E and H z depending on the E- and H z -contour map, which will hold J 2 invariant relative orbits for extended durations. To investigate the high-order nonlinearity neglected by previous studies, a formation configuration with a large magnitude of 500 km is successfully generated from the theory developed in the present work, which is beyond the scope of the linear conditions of J 2 invariant relative orbits. Therefore, the existence of J 2 invariant relative orbit with an arbitrary relative magnitude over the infinite time is achieved from the dynamical system point of view.  相似文献   

20.
Nonlinear dynamical analysis and the control problem for a displaced orbit above a planet are discussed. It is indicated that there are two equilibria for the system, one hyperbolic (saddle) and one elliptic (center), except for the degenerate h z max, a saddle-node bifurcation point. Motions near the equilibria for the nonresonance case are investigated by means of the Birkhoff normal form and dynamical system techniques. The Kolmogorov–Arnold–Moser (KAM) torus filled with quasiperiodic trajectories is measured in the τ 1 and τ 2 directions, and a rough algorithm for calculating τ 1 and τ 2 is proposed. A general iterative algorithm to generate periodic Lyapunov orbits is also presented. Transitions in the neck region are demonstrated, respectively, in the nonresonance, resonance, and degradation cases. One of the important contributions of the paper is to derive necessary and sufficiency conditions for stability of the motion near the equilibria. Another contribution is to demonstrate numerically that the critical KAM torus of nontransition is filled with the (1,1)-homoclinic orbits of the Lyapunov orbit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号