首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jets and outflows are thought to be an integral part of accretion phenomena and are associated with a large variety of objects. In these systems, the interaction of magnetic fields with an accretion disk and/or a magnetized central object is thought to be responsible for the acceleration and collimation of plasma into jets and wider angle flows. In this paper we present three-dimensional MHD simulations of magnetically driven, radiatively cooled laboratory jets that are produced on the MAGPIE experimental facility. The general outflow structure comprises an expanding magnetic cavity which is collimated by the pressure of an extended plasma background medium, and a magnetically confined jet which develops within the magnetic cavity. Although this structure is intrinsically transient and instabilities in the jet and disruption of the magnetic cavity ultimately lead to its break-up, a well collimated, “knotty” jet still emerges from the system; such clumpy morphology is reminiscent of that observed in many astrophysical jets. The possible introduction in the experiments of angular momentum and axial magnetic field will also be discussed.  相似文献   

2.
We review status of theoretical development for jets and molecular outflows from young stellar objects. A particular framework for explaining these phenomena is one based on the X-wind theory in an environment of magnetized collapsing molecular cloud cores. The magnetized gravitational collapse follows the standard picture of isolated low-mass star formation, from quasi-static evolution of the parent molecular cloud cores. The outflow phenomena operate throughout the early evolution of young stars as a result of star-disk interaction. We discuss emission mechanisms of jets and formation of molecular outflows in this general framework. The general theoretical framework provides room for self-consistent interpretations for recent observations. Jets and outflows are integral part of earliest evolution of young stellar objects.  相似文献   

3.
江治波  杨戟 《天文学进展》2000,18(4):320-335
分子氢的红外振动发射线是显现年轻星质量外流的重要谱线之一。自Gautier等人1976年在猎户座发现年轻星质量外流的分子氢发射开始,人们在银河系内几乎所有的恒星形成区都发现了这种线发射。研究表明,分子氢发射与年轻星周围的其它活动现象(如分子外流和光学喷流)之间有着非常密切的联系。红外和光学喷流代表了年轻星剧烈活动的两个侧面,是喷流与周围介质相互作用强弱不同的表现,这种作用还拖带周围介质,产生分子外流,光学、红外喷流和分子外流组成了恒星形成区壮观的景象,它们是恒星形成活动的重要标志。随着红外探测技术的飞速发展,对年轻星外流活动现象的观测越来越丰富的详细,使人们对这种现象的本质越来越了解。在20世纪90年代NICMOS等大阵列红外探测器投入使用后,红外成像观测有了长足的进步。目前已在70个左右的区域里发现了H2发射,这一数字还在迅速增加,今后的研究主要可能向两个方向发展。其一是高分辨观测,进一步了解H2发射的结构以及与光学喷流和分子外流之间的关系;其二是天观测,了解银河系内的恒星形成H2区发射的大尺度结构和恒星形成的统计分布规律。  相似文献   

4.
We present the results of experiments in which jets are created through the collision of two laser-produced plasmas. These experiments use a simple ‘v-foil’ target design: two thin foils are placed at an angle of 140° to each other, and irradiated with a high-energy laser. The plasmas from the rear face of these foils collide and drive plasma jets moving with a velocity of ~300 km?s?1. By choosing the foil thickness and material to suit the laser conditions available, it has proven possible to create plasma jets for which the relevant scaling parameters show significant overlap with those of outflows associated with young stellar objects (YSOs). Preliminary results are also shown from experiments to study the effect of an ambient gas on jet propagation. Nominally identical experiments are conducted either in vacuum or in an ambient medium of 5 mbar of nitrogen gas. The gas is seen to increase the jet collimation, and to introduce shock structures at the head of the outflow.  相似文献   

5.
Most stars produce spectacular jets during their formation. There are thousands of young stars within 500 pc of the Sun and many power jets. Thus protostellar jets may be the most common type of collimated astrophysical outflow. Shocks powered by outflows excite many emission lines, exhibit a rich variety of structure, and motions with velocities ranging from 50 to over 500 km s−1. Due to their relative proximity, proper motions and structural changes can be observed in less than a year. I review the general properties of protostellar jets, summarize some results from recent narrow-band imaging surveys of entire clouds, discuss irradiated jets, and end with some comments concerning outflows from high-mass young stellar objects. Protostellar outflows are ideal laboratories for the exploration of the jet physics.  相似文献   

6.
We present two dimensional cylindrically symmetric hydrodynamic simulations and synthetic emission maps of a stellar wind propagating into an infalling, rotating environment. The resulting outflow morphology, collimation and stability observed in these simulations have relevance to the study of young stellar objects, Herbig-Haro jets and molecular outflows. Our code follows hydrogen gas with molecular, atomic and ionic components tracking the associated time dependent molecular chemistry and ionization dynamics with radiative cooling appropriate for a dense molecular gas. We present tests of the code as well as new simulations which indicate the presence of instabilities in the wind-blown bubble’s swept-up shell.  相似文献   

7.
We lay out the scientific rationale for and present the instrumental requirements of a high‐resolution adaptiveoptics Echelle spectrograph with two full‐Stokes polarimeters for the Large Binocular Telescope (LBT) in Arizona. Magnetic processes just like those seen on the Sun and in the space environment of the Earth are now well recognized in many astrophysical areas. The application to other stars opened up a new field of research that became widely known as the solarstellar connection. Late‐type stars with convective envelopes are all affected by magnetic processes which give rise to a rich variety of phenomena on their surface and are largely responsible for the heating of their outer atmospheres. Magnetic fields are likely to play a crucial role in the accretion process of T‐Tauri stars as well as in the acceleration and collimation of jet‐like flows in young stellar objects (YSOs). Another area is the physics of active galactic nucleii (AGNs) , where the magnetic activity of the accreting black hole is now believed to be responsible for most of the behavior of these objects, including their X‐ray spectrum, their notoriously dramatic variability, and the powerful relativistic jets they produce. Another is the physics of the central engines of cosmic gamma‐ray bursts, the most powerful explosions in the universe, for which the extreme apparent energy release are explained through the collimation of the released energy by magnetic fields. Virtually all the physics of magnetic fields exploited in astrophysics is somehow linked to our understanding of the Sun's and the star's magnetic fields. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
A brief review is given of some results of our work on the construction of (I) steady and (II) time-dependent MHD models for nonrelativistic and relativistic astrophysical outflows and jets, analytically and numerically. The only available exact solutions for MHD outflows are those in separable coordinates, i.e., with the symmetry of radial or meridional self-similarity. Physically accepted solutions pass from the fast magnetosonic separatrix surface in order to satisfy MHD causality. An energetic criterion is outlined for selecting radially expanding winds from cylindrically expanding jets. Numerical simulations of magnetic self-collimation verify the conclusions of analytical steady solutions. We also propose a two-component model consisting of a wind outflow from a central object and a faster rotating outflow launched from a surrounding accretion disk which plays the role of the flow collimator. We also discuss the problem of shock formation during the magnetic collimation of wind-type outflows into jets.  相似文献   

9.
《New Astronomy Reviews》2002,46(2-7):421-425
We study the collimation of radio jets in the high-luminosity Fanaroff–Riley class II sources by examining the dependence of the sizes of hotspots and knots in the radio jets on the overall size of the objects for a sample of compact steep-spectrum or CSS and larger-sized objects. The objects span a wide range in overall size from about 50 pc to 1 Mpc. The mean size of the hotspots increases with the source size during the CSS phase, which is typically taken to be about 20 kpc, and the relationship flattens for the larger sources. The hotspot size ratio – separation ratio diagram suggests that the very asymmetric CSS objects evolve in an asymmetric environment. We also suggest that some sources, especially of lower luminosity, exhibit an asymmetry in the collimation of the oppositely-directed radio jets.  相似文献   

10.
We propose that sub-Keplerian accretion belts around stars might launch jets. The sub-Keplerian inflow does not form a rotationally supported accretion disk, but it rather reaches the accreting object from a wide solid angle. The basic ingredients of the flow are a turbulent region where the accretion belt interacts with the accreting object via a shear layer, and two avoidance regions on the poles where the accretion rate is very low. A dynamo that is developed in the shear layer amplifies magnetic fields to high values. It is likely that the amplified magnetic fields form polar outflows from the avoidance regions. Our speculative belt-launched jets model has implications on a rich variety of astrophysical objects, from the removal of common envelopes to the explosion of core collapse supernovae by jittering jets.  相似文献   

11.
We follow the premise that most intermediate luminosity optical transients(ILOTs) are powered by rapid mass accretion onto a main sequence star,and study the effects of jets launched by an accretion disk.The disk is formed due to large specific angular momentum of the accreted mass.The two opposite jets might expel some of the mass from the reservoir of gas that feeds the disk,and therefore reduce and shorten the mass accretion process.We argue that by this process ILOTs limit their luminosity and might even shut themselves off in this negative jet feedback mechanism(JFM).The group of ILOTs is a new member of a large family of astrophysical objects whose activity is regulated by the operation of the JFM.  相似文献   

12.
We have obtained infrared colors and limiting magnitudes from 1.25–4.8µm for a sample of 26 of the cm continuum radio sources located in the core of the Oph molecular cloud. Their colors demonstrate that the majority of the sources appear to be heavily reddened objects surrounded by circumstellar accretion disks. In these cases the radio emission most likely diagnoses accretion driven energetic outflow phenomena: either ionized winds or possibly synchrotron emission from shocked gas associated with stellar jets.  相似文献   

13.
14.
We have searched for CO outflows in eight embedded IRAS sources located in the Taurus molecular cloud using the 45m telescope of Nobeyama Radio Observatory. We have detected CO wing emission in four of these sources. CO outflow associated with TMC1A (04365+2535) is strong and spatially compact (radius 0.04 pc). The dynamical timescale of 2.5 × 103 yr suggests this outflow is the youngest one in Taurus.We have combined our data with previously published survey data and have analyzed the physical properties of the outflow sources. We found that 12 out of 16 embedded sources ( 75 %) have CO outflows associated with them; this indicates that almost all stars experience a phase of molecular outflow in their embedded stage. The IRAS color of the outflow sources suggests that the outflows appear in considerably early phase of the evolution of YSOs, that is, as early as YSOs became observable with IRAS and that visible outflow sources are in a transient phase of evolution between embedded sources and visible T Tauri stars without outflow. Visible outflow sources are systematically more luminous than visible no-outflow sources, while embedded outflow sources have comparable luminosities with visible no-outflow sources. Such luminosity function suggests that the YSOs with outflow undergo mass accretion and increase their stellar mass as they progress from embedded sources to visible outflow sources. Typical mass accretion rate derived from the bolometric luminosity is 2 ×10–6 M yr –1. The timescale for mass accretion to acquire typical stellar mass, 0.5 – 0.8M , is 2.5 – 4 × 105 yr.  相似文献   

15.
Stars form in regions of the galaxy that are denser and cooler than the mean interstellar medium. These regions are called Giant Molecular Clouds. At the beginning of their life, up to 105–106 years, stars accrete matter from their rich surrounding environment and are origin of a peculiar phenomenon that is the jet emission. Jets from Young Stellar Objects (YSOs) are intensively studied by the astrophysical community by observations at different wavelengths, analytical and numerical modeling and laboratory experiments. Indications about the jet propagation and its resulting morphologies are here obtained by means of a combined study of hypersonic jets carried out both in the laboratory and by numerical simulations.  相似文献   

16.
We derive accretion rate functions (ARFs) and kinetic luminosity functions (KLFs) for jet-launching supermassive black holes. The accretion rate as well as the kinetic power of an active galaxy is estimated from the radio emission of the jet. For compact low-power jets, we use the core radio emission while the jet power of high-power radio-loud quasars is estimated using the extended low-frequency emission to avoid beaming effects. We find that at low luminosities the ARF derived from the radio emission is in agreement with the measured bolometric luminosity function (BLF) of active galactic nucleus (AGN), i.e. all low-luminosity AGN launch strong jets. We present a simple model, inspired by the analogy between X-ray binaries (XRBs) and AGN, that can reproduce both the measured ARF of jet-emitting sources as well as the BLF. The model suggests that the break in power-law slope of the BLF is due to the inefficient accretion of strongly sub-Eddington sources. As our accretion measure is based on the jet power it also allows us to calculate the KLF and therefore the total kinetic power injected by jets into the ambient medium. We compare this with the kinetic power output from supernova remnants (SNRs) and XRBs, and determine its cosmological evolution.  相似文献   

17.
We study the 37 brightest radio sources in the Subaru/ XMM–Newton Deep Field. We have spectroscopic redshifts for 24 of 37 objects and photometric redshifts for the remainder, yielding a median redshift z med for the whole sample of   z med≃ 1.1  and a median radio luminosity close to the 'Fanaroff–Riley type I/type II (FR I/FR II)' luminosity divide. Using mid-infrared (mid-IR) ( Spitzer MIPS 24 μm) data we expect to trace nuclear accretion activity, even if it is obscured at optical wavelengths, unless the obscuring column is extreme. Our results suggest that above the FR I/FR II radio luminosity break most of the radio sources are associated with objects that have excess mid-IR emission, only some of which are broad-line objects, although there is one clear low-accretion-rate object with an FR I radio structure. For extended steep-spectrum radio sources, the fraction of objects with mid-IR excess drops dramatically below the FR I/FR II luminosity break, although there exists at least one high-accretion-rate 'radio-quiet' QSO. We have therefore shown that the strong link between radio luminosity (or radio structure) and accretion properties, well known at z ∼ 0.1, persists to z ∼ 1. Investigation of mid-IR and blue excesses shows that they are correlated as predicted by a model in which, when significant accretion exists, a torus of dust absorbs ∼30 per cent of the light, and the dust above and below the torus scatters ≳1 per cent of the light.  相似文献   

18.
We present the MHD simulation including accretion flows in disks, acceleration of outflows from disks, and collimation of the outflows self-consistently. Although it was considered that this kind of simulations only shows the transient phenomena of jets, we found that the outflow and accretion flow reached a quasi-steady state by performing a long-term calculation in a large calculation region. Though the final stage is not exactly the steady state, the acceleration and collimation mechanisms of the outflow were the same as those of the steady theory. The scale of the calculation is approaching to the scale that was observed by the VLBI technique, which provides the current highest resolution for YSO jets.  相似文献   

19.
We study the collimation of radio jets in the high-luminosity Fanaroff–Riley class II sources by examining the dependence of the sizes of hotspots and knots in the radio jets on the overall size of the objects for a sample of compact steep-spectrum (CSS) and larger-sized objects. The objects span a wide range in overall size from about 50 pc to nearly 1 Mpc. The mean size of the hotspots increases with the source size during the CSS phase, which is typically taken to be about 20 kpc, and the relationship flattens for the larger sources. The sizes of the knots in the compact as well as the larger sources are consistent with this trend. We discuss possible implications of these trends. We find that the hotspot closer to the nucleus or core component tends to be more compact for the most asymmetric objects where the ratio of separations of the hotspots from the nucleus r d>2. These highly asymmetric sources are invariably CSS objects, and their location in the hotspot size ratio–separation ratio diagram is possibly the result of their evolution in an asymmetric environment. We also suggest that some sources, especially of lower luminosity, exhibit an asymmetry in the collimation of the oppositely directed radio jets.  相似文献   

20.
Two rival hypotheses have been proposed for the origin of the compact radio flux observed in radio-quiet quasars (RQQs). It has been suggested that the radio emission in these objects, typically some two or three orders of magnitude less powerful than in radio-loud quasars (RLQs), either represents emission from a circumnuclear starburst or is produced by radio jets with bulk kinetic powers ∼ 103 times lower than those of RLQs with similar luminosity ratios in other wavebands. We describe the results of high-resolution (∼pc-scale) radio-imaging observations of a sample of 12 RQQs using the Very Long Baseline Array (VLBA). We find strong evidence for jet-producing central engines in eight members of our sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号