首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on dust measurements obtained during the seventh orbit of the Galileo spacecraft about Jupiter. The most prominent features observed are highly time variable dust streams recorded throughout the Jovian system. The impact rate varied by more than an order of magnitude with a 5 and 10 hour periodicity, which shows a correlation with Galileo's position relative to the Jovian magnetic field. This behavior can be qualitatively explained by strong coupling of nanometer-sized dust to the Jovian magnetic field. In addition to the 5 and 10 h periodicities, a longer period which is compatible with Io's orbital period is evident in the dust impact rate. This feature indicates that Io most likely is the source of the dust streams. During a close (3,095 km altitude) flyby at Ganymede on 5 April 1997 an enhanced rate of dust impacts has been observed, which suggests that Ganymede is a source of ejecta particles. Within a distance of about 25 RJ(Jupiter radius, RJ= 71,492 km) from Jupiter impacts of micrometer-sized particles have been recorded which could be particles on bound orbits about Jupiter. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Mars General Circulation Model (GCM) simulations are presented to illustrate the importance of the ice emissivity of the seasonal CO2 polar caps in regulating the effects of airborne dust on the martian CO2 cycle. Simulated results show that atmospheric dust suppresses CO2 condensation when the CO2 ice emissivity is high but enhances it when the CO2 ice emissivity is low. This raises the possibility that the reason for the repeatable nature of the CO2 cycle in the presence of a highly variable dust cycle is that the CO2 ice emissivity is “neutral” - the value that leads to no change in CO2 condensation with changing atmospheric dust. For this GCM, the “neutral” emissivity is approximately 0.55, which is low compared to observed cap emissivities. This inconsistency poses a problem for this hypothesis. However, it is clear that the CO2 ice emissivity is a critical physical parameter in determining how atmospheric dust affects the CO2 cycle on Mars.  相似文献   

3.
The recent detection of up to ∼10 wt% water-equivalent H heterogeneously distributed in the upper meter of the equatorial regions of the martian surface and the presence of the 3-μm hydrations feature across the entire planet raises the question whether martian surficial dust can account for this water-equivalent H. We have investigated the H2O and CO2 adsorption properties of palagonitic dust (<5 μm size fraction of phyllosilicate-poor palagonitic tephra HWMK919) as a martian dust analog and two smectites under simulated martian equatorial surface conditions. Our results show that the palagonitic dust, which contains hydrated and hydroxylated volcanic glass of basaltic composition, accommodates significantly more H2O under comparable humidity and temperature conditions than do the smectites nontronite and montmorillonite.  相似文献   

4.
The large amounts of dust detected in sub-millimeter galaxies and quasars at high redshift pose a challenge to galaxy formation models and theories of cosmic dust formation. At z>6 only stars of relatively high mass (>3 M) are sufficiently short-lived to be potential stellar sources of dust. This review is devoted to identifying and quantifying the most important stellar channels of rapid dust formation. We ascertain the dust production efficiency of stars in the mass range 3–40 M using both observed and theoretical dust yields of evolved massive stars and supernovae (SNe) and provide analytical expressions for the dust production efficiencies in various scenarios. We also address the strong sensitivity of the total dust productivity to the initial mass function. From simple considerations, we find that, in the early Universe, high-mass (>3 M) asymptotic giant branch stars can only be dominant dust producers if SNe generate ≲3×10−3 M of dust whereas SNe prevail if they are more efficient. We address the challenges in inferring dust masses and star-formation rates from observations of high-redshift galaxies. We conclude that significant SN dust production at high redshift is likely required to reproduce current dust mass estimates, possibly coupled with rapid dust grain growth in the interstellar medium.  相似文献   

5.
Model calculations were carried out to determine the extent of the effects on the rotational bursting of F-coronal dust in eccentric orbits due to their interaction with the flow of coronal mass ejections (CMEs). The model included an initial limiting perihelion distance of 8 solar radii (RS) for all particles used. The parameters of the CMEs (velocity and proton number density) along with the various parameters of the dust particles (size and median density) were taken into consideration. By keeping these parameters the same and varying one of them, it was found that the velocity of the CMEs protons plays a major role in determining at which heliocentric distance the particle bursts. To a lesser degree, the median density of the particle also had a similar effect. Depending on the values of the dust particles orbital eccentricity, limiting sizes of the dust particles were found beyond which the particles do not burst. More particles bursted in regions close to their perihelion passage, however very few particles bursted near 8RS from which we conclude that the majority of the fragmented particles were outside the F-corona region. The results show that rotational bursting of the dust in eccentric orbits inside the F-corona forces the particles to fragment outside 8RS.  相似文献   

6.
The degree to which dust enrichment enhances the oxygen fugacity (fO2) of a system otherwise solar in composition depends on the dust composition. Equilibrium calculations were performed at 10?3 bar in systems enriched by a factor of 104 in two fundamentally different types of dust to investigate the iron oxidation state in both cases. One type of dust, called SC for solar condensate, stopped equilibrating with solar gas at too high a temperature for FeO or condensed water to be stabilized in any form, and thus has the composition expected of a nebular condensate. The other has CI chondrite composition, appropriate for a parent body that accreted from SC dust and low‐temperature ice. Upon total vaporization at 2300 K, both systems have high fO2, >IW. In the SC dust‐enriched system, FeO of the bulk silicate reaches ~10 wt% at 1970 K but decreases to <1 wt% below 1500 K. The FeO undergoes reduction because consumption of gaseous oxygen by silicate recondensation causes a precipitous drop in fO2. Thus, enrichment in dust having the composition of likely nebular condensates cannot yield a sufficiently oxidizing environment to account for the FeO contents of chondrules. The fO2 of the system enriched in water‐rich, CI dust, however, remains high throughout condensation, as gaseous water remains uncondensed until very low temperatures. This allows silicate condensates to achieve and maintain FeO contents of 27–35 wt%. Water‐rich parent bodies are thus excellent candidate sources of chondrule precursors. Impacts on such bodies may have created the combination of high dust enrichment, total pressure, and fO2 necessary for chondrule formation.  相似文献   

7.
In the new investigation of dust-ion acoustic (DIA) waves with negative dust charges and weakly relativistic ions and electrons in the plasma, compressive and rarefactive DIA solitons of interesting characters are established through the Korteweg-de Vries (KdV) equation. Eventually, the amplitudes of the compressive DIA solitons are found to be constant at some critical temperature ratio α c (electron to ion temperature ratio) identifying some critical dust charge Z dc . It is predicted, that the reception of dust charges by the plasma particles at the variation of temperature starts functioning to the growth of compressive soliton’s constant stage of amplitude after the state of critical α c . The identification of critical dust charge (Z dc ) which is found to be very great for solitons of constant amplitudes becomes feasible for very small dust to ion density ratio (σ). But it can be achieved, we observe, due to the relativistic increase in ion-density as in mass, which is also a salient feature of this investigation.  相似文献   

8.
In a disk with a low optical depth, dust particles drift radially inward by the Poynting-Robertson (P-R) drag rather than are blown out by stellar radiation pressure following destructive collisions. We investigate the radial distribution of icy dust composed of pure ice and refractory materials in dust-debris disks taking into account the P-R drag and ice sublimation. We find that icy dust particles form a dust ring by their pile-ups at the edge of their sublimation zone, where they sublime substantially at the temperature 100-110 K. The distance of the dust ring is 20-35 AU from the central star with its luminosity L??30L and 65(L?/100L)1/2 AU for L??30L, where L is the solar luminosity. The effective optical depth is enhanced by a factor of 2 for L??100L and more than 10 for L??100L. The optical depth of the outer icy dust disk exceeds that of the inner disk filled with refractory particles, namely, the residue of ice sublimation, which are further subjected to the P-R effect. As a result, an inner hole is formed inside the sublimation zone together with a dust ring along the outer edge of the hole.  相似文献   

9.
Observations of sungrazing comets, all of which belong to the Kreutz family, provide the opportunity of studying the properties of dust in the comae and tails of the comets. On the basis of available information on cometary and interplanetary dust as well as observations of dust in the tails of sungrazers, we model dust in sungrazing comets as fluffy silicate aggregates of submicrometer sizes. To better interpret observational data, we numerically calculate the solar radiation pressure, the equilibrium temperature, and the sublimation and crystallization rates of silicate grains near the Sun. Our results show that the dust tails contain aggregates of submicrometer crystal grains, but not amorphous grains, since amorphous silicates mostly crystallize after release from the comets. The peak in the lightcurves of the dust comae observed either at 11.2 or 12.3 solar radii (R) seems to result from sublimation of fluffy aggregates consisting of crystalline or amorphous olivines, respectively. We attribute an additional enhancement in the lightcurves inside 7 R to increasing out-flow of crystalline and amorphous pyroxenes composed fluffy aggregates. According to our model, the observed lightcurves indicate a high abundance of olivine and a low abundance of pyroxene in the comets, which may bear implications about the dynamical and thermal history of the sungrazers and their progenitor.  相似文献   

10.
Huiqun Wang 《Icarus》2007,189(2):325-343
Data from the third Mars Global Surveyor (MGS) mapping year (MY 26, 2003-2005) are used to investigate dust storms originating in the northern hemisphere. Flushing dust storms, which originate as frontal dust storms at the northern polar vortex edge and propagate southward through topographic channels, are observed immediately before and after a quiescent period that occurs around the northern winter solstice (240°<Ls<300°). Both the pre- and post-solstice active periods can be further divided into two sub-periods. The most vigorous of these flushing storms occurred during Ls 210-220° and Ls 310-320°. The lifted dust crossed the equator and accumulated in the southern hemisphere. These major dust storms enhanced the Hadley circulation and suppressed the lower-level baroclinic eddies in the northern mid and high latitudes. The 2-3 sol wave number m=3 traveling waves show the best correlation with flushing dust storms and can combine with other wave modes to produce storm tracks and fronts within individual sub-periods.  相似文献   

11.
Broadband imaging of Comet 67P/Churyumov–Gerasimenko has provided more data on the characterisation of the target of the ESA Rosetta Mission. The comet monitoring between r h=2.37 and r h=2.78 AU postperihelion shows a prominent dust coma which extends up to ≈ 25,000 km from the nucleus, and a long dust structure in approximately anti-tail direction, reaching at least 230,000 km, identified as a neck-line structure. The non-isotropic dust emission is detected from the structures in the inner coma, and it is reflected on the slope of linear fits of surface brightness profiles vs. cometocentric projected distance in log–log representation as m ≈ 0.83−0.941. Besides the long dust spike at position angle of 295°, the morphological study of the dust coma confirms the presence of two structures at position angles of 95 and 195° where the overabundance of dust can be as high as 50% at ρ ≤ 30,000 km. The A f ρ parameter derived from our R broadband data is 26.0 and 29.8 cm at r h=2.37 and 2.48 AU postperihelion. The dust reflectivity S′(λ), a measurement of the dust colour, is 0.061±0.019, a rather neutral colour.  相似文献   

12.
The very young star cluster IC 5146 is studied using star counts, with a view to determining the distribution of interstellar matter in a region where star formation recently occurred. IC 5146 is embedded in a dark nebula which is very dense near its centre. The total mass of interstellar dust in the nebula is found to be about 4.5M . Comparison of radio and optical observations of the region indicates that gas and dust are not separated to any great degree by radiation from the embedded stars. A gas/dust ratio of about 150/1 by mass is found. This ratio varies with the dust grain model used.  相似文献   

13.
Physical processes affecting propagation of moderate-strength shocks in the inner parts of circumstellar envelopes of Miras are considered. In particular, the influence of dust, which is heated later than heavy gas particles, is critical for pumping of circumstellar H2O masers. Strong shocks with Mach numbers M exceeding ∼ 10 destroy dust and molecules and partly ionize the gas. Weaker shocks with 3 < M < 10 spend their energy mainly to dissociate molecules. Shocks with 1 < M < 3 lose their energy via heating of dust and may stimulate formation of dust. Some implications are discussed. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

14.
A general circulation model is used to evaluate changes to the circulation and dust transport in the martian atmosphere for a range of past orbital conditions. A dust transport scheme, including parameterized dust lifting, is incorporated within the model to enable passive or radiatively active dust transport. The focus is on changes which relate to surface features, as these may potentially be verified by observations. Obliquity variations have the largest impact, as they affect the latitudinal distribution of solar heating. At low obliquities permanent CO2 ice caps form at both poles, lowering mean surface pressures. At higher obliquities, solar insolation peaks at higher summer latitudes near solstice, producing a stronger, broader meridional circulation and a larger seasonal CO2 ice cap in winter. Near-surface winds associated with the main meridional circulation intensify and extend polewards, with changes in cap edge position also affecting the flow. Hence the model predicts significant changes in surface wind directions as well as magnitudes. Dust lifting by wind stress increases with obliquity as the meridional circulation and associated near-surface winds strengthen. If active dust transport is used, then lifting rates increase further in response to the larger atmospheric dust opacities (hence circulation) produced. Dust lifting by dust devils increases more gradually with obliquity, having a weaker link to the meridional circulation. The primary effect of varying eccentricity is to change the impact of varying the areocentric longitude of perihelion, l, which determines when the solar forcing is strongest. The atmospheric circulation is stronger when l aligns with solstice rather than equinox, and there is also a bias from the martian topography, resulting in the strongest circulations when perihelion is at northern winter solstice. Net dust accumulation depends on both lifting and deposition. Dust which has been well mixed within the atmosphere is deposited preferentially over high topography. For wind stress lifting, the combination produces peak net removal within western boundary currents and southern midlatitude bands, and net accumulation concentrated in Arabia and Tharsis. In active dust transport experiments, dust is also scoured from northern midlatitudes during winter, further confining peak accumulation to equatorial regions. As obliquity increases, polar accumulation rates increase for wind stress lifting and are largest for high eccentricities when perihelion occurs during northern winter. For dust devil lifting, polar accumulation rates increase (though less rapidly) with obliquity above o=25°, but increase with decreasing obliquity below this, thus polar dust accumulation at low obliquities may be increasingly due to dust lifted by dust devils. For all cases discussed, the pole receiving most dust shifts from north to south as obliquity is increased.  相似文献   

15.
We calculate the amount of methane that may form via reactions catalyzed by metal-rich dust that condenses in the wake of large cometary impacts. Previous models of the gas-phase chemistry of impacts predicted that the terrestrial planets' atmospheres should be initially dominated by CO/CO2, N2, and H2O. CH4 was not predicted to form in impacts because gas-phase reactions in the explosion quench at temperatures ∼2000 K, at which point all of the carbon is locked in CO. We argue that the dust that condenses out in the wake of a large comet impact is likely to have very effective catalytic properties, opening up reaction pathways to convert CO and H2 to CH4 and CO2, at temperatures of a few hundred K. Together with CO2, CH4 is an important greenhouse gas that has been invoked to compensate for the lower luminosity of the Sun ∼4 Gyr ago. Here, we show that heterogeneous (gas-solid) reactions on freshly-recondensed dust in the impact cloud may provide a plausible nonbiological mechanism for reducing CO to CH4 before and during the emergence of life on Earth, and perhaps Mars as well. These encouraging results emphasize the importance of future research into the kinetics and catalytic properties of astrophysical condensates or “smokes” and also more detailed models to determine the conditions in impact-generated dust clouds.  相似文献   

16.
We discuss dust formation in steady state dust driven winds around oxygen-rich AGB stars, including not only homogeneous Al2O3 and silicate grains but also heterogeneous grains consisting of an Al2O3 core and a silicate mantle. In the inner subsonic region, Al2O3 grains with radii of ∼ 0.15 μm condense first, then condensation of silicate on Al2O3 starts slightly inside the sonic point, which accelerates the gas flow into the supersonic region. Also small silicate grains, whose radii are a few tens of ?ngstroms form beyond the sonic point. The carrier of 13 μm feature observed towards oxygen-rich AGB stars is considered to be the core-mantle grains consisting of an α-Al2O3 core and a silicate mantle from the radiation transfer calculations based on the results of dust formation calculations. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

17.
We investigate the method by which nearby supernovae – within a few tens of pc of the solar system – can penetrate the solar system and deposit live radioactivities on earth. The radioactive isotopic signatures that could potentially leave an observable geological imprint are in the form of refractory metals; consequently, it is likely they would arrive in the form of supernova-produced dust grains. Such grains can penetrate into the solar system more easily than the bulk supernova plasma, which gets stalled and deflected near the solar system due to the solar wind plasma pressure. We therefore examine the motion of charged grains as they decouple from the supernova plasma and are influenced by the solar magnetic, radiation, and gravitational fields. We characterize the dust trajectories with analytical approximations which display the roles of grain size, initial velocity, and surface voltage. These results are verified with full numerical simulations for wide ranges of dust properties. We find that supernova dust grains traverse the inner solar system nearly undeflected, if the incoming grain velocity – which we take to be that of the incident supernova remnant – is comparable to the solar wind speeds and much larger than the escape velocity at 1 AU. Consequently, the dust penetration to 1 AU has essentially 100% transmission probability and the dust capture onto the earth should have a geometric cross section. Our results cast in a new light the terrestrial deposition of radioisotopes from nearby supernovae in the geological past. For explosions beyond ~10 pc from earth, dust grains can still deliver supernova ejecta to earth, and thus the amount of supernova material deposited is set by the efficiency of dust condensation and survival in supernovae. Turning the problem around, we use observations of live 60Fe in both deep-ocean and lunar samples to infer a conservative lower bound iron condensation efficiency of Mdust,Fe/Mtot,Fe ? 4  × 10?4 for the supernova which apparently produced these species 2–3 Myr ago.  相似文献   

18.
This investigation on the temperature of the interstellar warm ionized medium (WIM) is characterized by the number and energy balance of the constituents of the WIM complex plasma viz. H plasma (electrons/ions/neutral atoms) and graphite dust, having a size distribution, characterized by the MRN (Mathis, Rumpl and Nordsieck) power law. Ionization of neutral atoms, electron–ion recombination, photoemission of electrons from and accretion on the dust and cooling through electron collisional excitation, followed by radiative decay of atoms has been included in the analysis. An appropriate expression for the rate of emission and mean energy of photoelectrons emitted from the surface of positively charged dust particles has been used which takes into account the dependence of absorption efficiency on wavelength of the radiation, radius of the particle and spectral irradiance distribution. The results of the parametric analysis have been displayed graphically. It is seen that the consensus values of temperature, surface potential on the dust particles and electron/ion/neutral atom densities, characteristic of interstellar warm ionized medium can be explained on the basis of plausible combinations of the dust particle density n d and the parameter f ex α ex , where f ex is the fraction of the energy of the neutral gas atoms which gets irradiated, α ex n e n n is the number of the neutral atoms, which get excited per unit volume per unit time and n e (n n ) correspond to the density of electrons (neutral atoms).  相似文献   

19.
The problem of nonlinear localized dust acoustic (DA) is addressed in a plasma comprising positive ions, negative ions, and mobile negatively charged dust grains. We first consider the case when the grain charge remains constant and discuss later the case when the charge variations are self-consistently included. It is found that a relative increase of the positive ion density favors the propagation of the DA solitary waves, in the sense that the domain of their admissible Mach numbers enlarges. Furthermore, electronegativity makes the dust acoustic solitary structure more spiky. When the dust grain charge Q d is allowed to fluctuate, the latter is expressed in terms of the Lambert function and we take advantage of this transcendental function to investigate the variable charge DA solitary wave. Q d adopts a localized profile and becomes more negative as the number of charges Z (−) of the negative ion increases. The dust grains are found to be highly localized. This localization (accumulation) caused by a balance of the electrostatic forces acting on the dust grains becomes more effective for lower values of Z (−). An increase of Z (−) may lead to a local depletion of the negative ions from the region of the soliton’s localization. The results are useful to understand the salient features of localization of large amplitude dust acoustic waves in cosmic plasmas such as the ionospheric D-region and the mesosphere.  相似文献   

20.
M. Podolak  R.E. Danielson 《Icarus》1977,30(3):479-492
The scattering and absorption properties of Axel dust were investigated by means of Mie theory. We find that a flat distribution of particle radii between 0 and 0.1 μm, and an imaginary part of the index of refraction which varies as λ?2.5 produce a good fit to the variation of Titan's geometric albedo with wavelength (λ) provided that τext, the extinction optical depth of Titan's atmosphere at 5000 Å, is about 10. The real part of the complex index is taken to be 2.0. The model assumes that the mixing ratio of Axel dust to gas is uniform above the surface of Titan. The same set of physical properties for Axel dust also produces a good fit to Saturn's albedo if τext = 0.7 at 5000 Å. To match the increase in albedo shortward of 3500 Å, a clear layer (containing about 7 km-am H2) is required above the Axel dust. Such a layer is also required to explain the limb brightening in the ultraviolet. These models can be used to analyze the observed equivalent widths of the visible methane bands. The analysis yields an abundance of the order of 1000 m-am CH4 in Titan's atmosphere. The derived CH4/H2 mixing ratio for Saturn is about 3.5 × 10?3 or an enhancement of about 5 over the solar ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号