首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the discovery of a double–double radio galaxy (DDRG), J0041+3224, with the Giant Metrewave Radio Telescope (GMRT) and subsequent high-frequency observations with the Very Large Array (VLA). The inner and outer doubles are aligned within ∼4° and are reasonably collinear with the parent optical galaxy. The outer double has a steeper radio spectrum compared to the inner one. Using an estimated redshift of 0.45, the projected linear sizes of the outer and inner doubles are 969 and 171 kpc, respectively. The time-scale of interruption of jet activity has been estimated to be ∼20 Myr, similar to other known DDRGs. We have compiled a sample of known DDRGs, and have re-examined the inverse correlation between the ratio of the luminosities of the outer to the inner double and the size of the inner double, l in. Unlike the other DDRGs with   l in≳ 50 kpc  , the inner double of J0041+3224 is marginally more luminous than the outer one. The two DDRGs with   l in≲  few kpc have a more luminous inner double than the outer one, possibly due to a higher efficiency of conversion of beam energy as the jets propagate through the dense interstellar medium. We have examined the symmetry parameters and found that the inner doubles appear to be more asymmetric in both its armlength and its flux density ratios compared to the outer doubles, although they appear marginally more collinear with the core than the outer double. We discuss briefly the possible implications of these trends.  相似文献   

2.
A double-double radio galaxy (DDRG) is defined as consisting of a pair of double radio sources with a common centre. In this paper we present an analytical model in which the peculiar radio structure of DDRGs is caused by an interruption of the jet flow in the central AGN. The new jets emerging from the restarted AGN give rise to an inner source structure within the region of the old, outer cocoon. Standard models of the evolution of FRII sources predict gas densities within the region of the old cocoon that are insufficient to explain the observed properties of the inner source structure. Therefore additional material must have passed from the environment of the source through the bow shock surrounding the outer source structure into the cocoon. We propose that this material is warm clouds (∼104 K) of gas embedded in the hot IGM which are eventually dispersed over the cocoon volume by surface instabilities induced by the passage of cocoon material. The derived lower limits for the volume filling factors of these clouds are in good agreement with results obtained from optical observations. The long time-scales for the dispersion of the clouds (∼107 yr) are consistent with the apparently exclusive occurrence of the DDRG phenomenon in large (≳700 kpc) radio sources, and with the observed correlation of the strength of the optical/UV alignment effect in z ∼1 FRII sources with their linear size.  相似文献   

3.
We present Very Large Array images of a 'double–double radio galaxy', a class of objects in which two pairs of lobes are aligned either side of the nucleus. In this object, B0 925+420, we discover a third pair of lobes, close to the core and again in alignment with the other lobes. This first-known 'triple–double' object strongly increases the likelihood that these lobes represent multiple episodes of jet activity, as opposed to knots in an underlying jet. We model the lobes in terms of their dynamical evolution. We find that the inner pair of lobes are consistent with the outer pair having been displaced buoyantly by the ambient medium. The middle pair of lobes are more problematic – to the extent where an alternative model interpreting the middle and inner 'lobes' as additional bow shocks within the outer lobes may be more appropriate – and we discuss the implications of this on our understanding of the density of the ambient medium.  相似文献   

4.
In previous papers we have discussed high-resolution observations of a large sample of powerful radio galaxies with z  < 0.3. Jets are detected in up to 80 per cent of the sample, and radio cores in nearly all the objects; in addition, we are able to resolve the hotspots in most sources. In this paper we present measurements of the radio properties of these components.   The prominences of the jets detected do not appear to be a function of radio luminosity, providing the clearest evidence yet that the reported low detection rate of jets in radio galaxies has been an artefact of low-sensitivity observations. We find a positive correlation between the total source length and core prominence in the narrow-line radio galaxies. We have found evidence for a relationship between hotspot size and total source size, but few other significant relationships between hotspot properties and those of the jets or lobes. We compare our measurements with those of Bridle et al., based on observations of a sample of quasars, and argue that the results are consistent with a modification of the unified model in which the broad-line radio galaxies are the low-luminosity counterparts of quasars, although the situation is complicated by contamination with low-excitation radio galaxies which appear to have radio properties different from the high-excitation objects. We discuss the classes of empirical model that can be fitted to the data set.  相似文献   

5.
We have observed a small sample of powerful double radio sources (radio galaxies and quasars) at frequencies around 90 GHz with the Berkeley Illinois Maryland Association (BIMA) millimetre array, with the intention of constraining the resolved high-frequency spectra of radio galaxies. When combined with other sources we have previously observed and with data from the BIMA archive, these observations allow us for the first time to make general statements about the high-frequency behaviour of compact components of radio galaxies – cores, jets and hotspots. We find that cores in our sample remain flat-spectrum up to 90 GHz; jets in some of our targets are detected at 90 GHz for the first time in our new observations and hotspots are found to be almost universal, but show a wide range of spectral properties. Emission from the extended lobes of radio galaxies is detected in a few cases and shows rough consistency with the expectations from standard spectral ageing models, though our ability to probe this in detail is limited by the sensitivity of BIMA. We briefly discuss the prospects for radio galaxy astrophysics with Atacama Large Millimeter Array.  相似文献   

6.
We have used deep ground-based imaging in the near-infrared (near-IR) to search for counterparts to the luminous submillimetre (submm) sources in the catalogue of Smail et al. For the majority of the submm sources the near-IR imaging supports the counterparts originally selected from deep optical images. However, in two cases (10 per cent of the sample) we find a relatively bright near-IR source close to the submm position, sources that were unidentified in the deep Hubble Space Telescope ( HST ) and ground-based R -band images used by Smail et al. We place limits on colours of these sources from deep high-resolution Keck II imaging and find they have 2 σ limits of ( I − K )≳6.8 and ( I − K )≳6.0, respectively. Both sources thus class as extremely red objects (EROs). Using the spectral properties of the submm source in the radio and submm we argue that these EROs are probably the source of the submm emission, rather than the bright spiral galaxies previously identified by Smail et al. This connection provides important insights into the nature of the enigmatic ERO population and faint submm galaxies in general. From the estimated surface density of these submm-bright EROs we suggest that this class accounts for the majority of the reddest members of the ERO population, in good agreement with the preliminary conclusions of pointed submm observations of individual EROs. We conclude that the most extreme EROs represent a population of dusty, ultraluminous galaxies at high redshifts; further study of these will provide useful insights into the nature of star formation in obscured galaxies in the early Universe. The identification of similar counterparts in blank-field submm surveys will be extremely difficult owing to their faintness ( K ∼20.5, I ≳26.5). Finally, we discuss the radio and submm properties of the two submm-bright EROs discovered here and suggest that both galaxies lie at z ≳2.  相似文献   

7.
We use the observed polarization properties of a sample of 26 powerful radio galaxies and radio-loud quasars to constrain the conditions in the Faraday screens local to the sources. We adopt the cosmological redshift, low-frequency radio luminosity and physical size of the large-scale radio structures as our 'fundamental' parameters. We find no correlation of the radio spectral index with any of the fundamental parameters. The observed rotation measure is also independent of these parameters, suggesting that most of the Faraday rotation occurs in the Galactic foreground. The difference between the rotation measures of the two lobes of an individual source, as well as the dispersion of the rotation measure, shows significant correlations with the source redshift, but not with the radio luminosity or source size. This is evidence that the small-scale structure observed in the rotation measure is caused by a Faraday screen local to the sources. The observed asymmetries between the lobes of our sources show no significant trends with each other or other source properties. Finally, we show that the commonly used model for the depolarization of synchrotron radio emission by foreground Faraday screens is inconsistent with our observations. We apply alternative models to our data and show that they require a strong increase of the dispersion of the rotation measure inside the Faraday screens with cosmological redshift. Correcting our observations with these models for redshift effects, we find a strong correlation of the depolarization measure with redshift and a significantly weaker correlation with radio luminosity. We do not find any (anti-)correlation of depolarization measure with source size. All our results are consistent with a decrease in the order of the magnetic field structure of the Faraday screen local to the sources for increasing cosmological redshift.  相似文献   

8.
We present new XMM–Newton observations of the hot-gas environments of two low-power twin-jet radio galaxies, 3C 66B and 3C 449, showing direct evidence for the interactions between X-ray-emitting gas and radio plasma that are thought to determine the large-scale radio structure of these sources. The temperatures that we measure for the two environments are significantly higher than those predicted by standard luminosity–temperature relations for clusters and groups. We show that luminosity–temperature relations for radio-quiet and radio-loud X-ray groups differ, in the sense that radio-source heating may operate in most groups containing radio galaxies. If the radio lobes are expanding subsonically, we find minimum ages of  3 × 108 yr  for 3C 66B, and  5 × 108 yr  for 3C 449, older than the values obtained from spectral ageing, which would give the radio source sufficient time to heat the groups to the observed temperatures for plausible values of the jet power. The external pressures in the atmospheres of both radio galaxies are an order of magnitude higher than equipartition estimates of their radio-lobe pressures, confirming that the radio lobes either are out of equipartition or require a pressure contribution from non-radiating particles. Constraints from the level of X-ray emission we measure from the radio lobes allow us to conclude that a departure from equipartition must be in the direction of magnetic domination, and that the most plausible candidates for a particle contribution to lobe pressure are relativistic protons, an additional population of low-energy electrons, or entrained and heated thermal material.  相似文献   

9.
We use the results of the SCUBA Local Universe Galaxy Survey, a submillimetre (submm) survey of galaxies in the nearby Universe, to investigate the relationship between the far-infrared (FIR)–submm and radio emission of galaxies at both low and high redshift. At low redshift we show that the correlation between radio and FIR emission is much stronger than the correlation between radio and submm emission, which is evidence that massive stars are the source of both the FIR and radio emission. At high redshift we show that the submm sources detected by SCUBA are brighter sources of radio emission than are predicted from the properties of galaxies in the local Universe. We discuss possible reasons for the cosmic evolution of the relationship between radio and FIR emission.  相似文献   

10.
We probe the relationship between star formation rate (SFR) and radio synchrotron luminosity in galaxies at  0 < z < 2  within the northern Spitzer Wide-area Infrared Extragalactic survey (SWIRE) fields, in order to investigate some of the assumptions that go into calculating the star formation history of the Universe from deep radio observations. We present new 610-MHz Giant Metrewave Radio Telescope (GMRT) observations of the European Large-Area ISO Survey-North 2 (ELAIS-N2) field, and using this data, along with previous GMRT surveys carried out in the ELAIS-N1 (North 1) and Lockman Hole regions, we construct a sample of galaxies which have redshift and SFR information available from the SWIRE survey. We test whether the local relationship between SFR and radio luminosity is applicable to   z = 2  galaxies, and look for evolution in this relationship with both redshift and SFR in order to examine whether the physical processes which lead to synchrotron radiation have remained the same since the peak of star formation in the Universe. We find that the local calibration between radio luminosity and star formation can be successfully applied to radio-selected high-redshift, high-SFR galaxies, although we identify a small number of sources where this may not be the case; these sources show evidence for inaccurate estimations of their SFR, but there may also be some contribution from physical effects such as the recent onset of starburst activity, or suppression of the radio luminosity within these galaxies.  相似文献   

11.
We present multi-wavelength radio observations with the Very Large Array, and narrow- and broad-band optical observations with the 2.5-m telescope at the Las Campanas Observatory, of a well-defined sample of high-luminosity Fanaroff–Riley class II radio galaxies and quasars, selected from the Molonglo Reference Catalogue 1-Jy sample. These observations were carried out as part of a programme to investigate the effects of orientation and environment on some of the observed properties of these sources. We examine the dependence of the Liu–Pooley relationship, which shows that radio lobes with flatter radio spectra are less depolarized, on size, identification and redshift, and show that it is significantly stronger for smaller sources, with the strength of the relationship being similar for both radio galaxies and quasars. In addition to Doppler effects, there appear to be intrinsic differences between the lobes on opposite sides. We discuss the asymmetry in brightness and location of the hotspots, and present estimates of the ages and velocities from matched-resolution observations in the L and C bands. Narrow- and broad-band optical images of some of these sources were made to study their environments and correlate with the symmetry parameters. An extended emission-line region is seen in a quasar, and in four of the objects possible companion galaxies are seen close to the radio axis.  相似文献   

12.
We show that for a sample of radio sources with z <0.5 from the complete LRL data set the broad-lined radio galaxies (BLRGs) have hotspots that are very much more recessed than their narrow-lined counterparts. The asymmetry in the amount by which the hotspots are recessed in the two lobes of a source is also greater in the BLRGs. Assuming the standard unified model these results indicate that the position of the hotspots in the lobes is orientation-dependent. The most plausible interpretation is that the hotspots do not always coincide with the termination point of the beam but are sometimes other, relativistically beamed, features internal to the lobes.  相似文献   

13.
We present deep near-infrared images, taken with the Subaru Telescope, of the region around the   z =1.08  radio source 3C 356 which show it to be associated with a poor cluster of galaxies. We discuss evidence that this cluster comprises two subclusters traced by the two galaxies previously proposed as identifications for 3C 356, which both seem to harbour active galactic nuclei, and which have the disturbed morphologies expected if they underwent an interpenetrating collision at the time the radio jets were triggered. We explain the high luminosity and temperature of the diffuse X-ray emission from this system as the result of shock heating of intracluster gas by the merger of two galaxy groups. Taken together with the results on other well-studied powerful radio sources, we suggest that the key ingredient for triggering a powerful radio source, at least at epochs corresponding to   z ∼1  , is a galaxy–galaxy interaction which can be orchestrated by the merger of their parent subclusters. This provides an explanation for the rapid decline in the number density of powerful radio sources since   z ∼1  . We argue that attempts to use distant radio-selected clusters to trace the formation and evolution of the general cluster population must address ways in which X-ray properties can be influenced by the radio source, both directly, by mechanisms such as inverse Compton scattering, and indirectly, by the fact that the radio source may be preferentially triggered at a specific time during the formation of the cluster.  相似文献   

14.
We have cross-matched the 1.4-GHz NRAO VLA Sky Survey (NVSS) with the first 210 fields observed in the 2dF Galaxy Redshift Survey (2dFGRS), covering an effective area of 325 deg2 (about 20 per cent of the final 2dFGRS area). This yields a set of optical spectra of 912 candidate NVSS counterparts, of which we identify 757 as genuine radio identifications – the largest and most homogeneous set of radio source spectra ever obtained. The 2dFGRS radio sources span the redshift range     to 0.438, and are a mixture of active galaxies (60 per cent) and star-forming galaxies (40 per cent). About 25 per cent of the 2dFGRS radio sources are spatially resolved by NVSS, and the sample includes three giant radio galaxies with projected linear size greater than 1 Mpc. The high quality of the 2dF spectra means we can usually distinguish unambiguously between AGN and star-forming galaxies. We make a new determination of the local radio luminosity function at 1.4 GHz for both active and star-forming galaxies, and derive a local star formation density of         .  相似文献   

15.
We present new radio observations at frequencies ranging from 240 to 4860 MHz of the well-known, double–double radio galaxy (DDRG), J1453+3308, using both the Giant Metrewave Radio Telescope (GMRT) and the Very Large Array (VLA). These observations enable us to determine the spectra of the inner and outer lobes over a large frequency range and demonstrate that while the spectrum of the outer lobes exhibits significant curvature, that of the inner lobes appears practically straight. The break frequency, and hence the inferred synchrotron age of the outer structure, determined from 16-arcsec strips transverse to the source axis, increases with distance from the heads of the lobes. The maximum spectral ages for the northern and southern lobes are ∼47 and 58 Myr, respectively. Because of the difference in the lengths of the lobes, these ages imply a mean separation velocity of the heads of the lobes from the emitting plasma of 0.036 c for both the northern and southern lobes. The synchrotron age of the inner double is about 2 Myr which implies an advance velocity of ∼0.1 c , but these values have large uncertainties because the spectrum is practically straight.  相似文献   

16.
Powerful radio galaxies often display enhanced optical/ultraviolet emission regions, elongated and aligned with the radio jet axis. The aim of this series of papers is to investigate separately the effects of radio power and redshift on the alignment effect, together with other radio galaxy properties. In this second paper, we present a deeper analysis of the morphological properties of these systems, including both the host galaxies and their surrounding aligned emission.
The host galaxies of our 6C subsample are well described as de Vaucouleurs ellipticals, with typical scale sizes of  ∼10 kpc  . This is comparable to the host galaxies of low- z radio sources of similar powers, and also the more powerful 3CR sources at the same redshift. The contribution of nuclear point source emission is also comparable, regardless of radio power.
The 6C alignment effect is remarkably similar to that seen around more powerful 3CR sources at the same redshift in terms of extent and degree of alignment with the radio source axis, although it is generally less luminous. The bright, knotty features observed in the case of the z ∼ 1 3CR sources are far less frequent in our 6C subsample; neither do we observe such strong evidence for evolution in the strength of the alignment effect with radio source size/age. However, we do find a very strong link between the most extreme alignment effects and emission-line region properties indicative of shocks, regardless of source size/age or power. In general, the 6C alignment effect is still considerably stronger than that seen around lower redshift galaxies of similar radio powers. Cosmic epoch is clearly just as important a factor as radio power: although aligned emission is observed on smaller scales at lower redshifts, the processes which produce the most extreme features simply no longer occur, suggesting considerable evolution in the properties of the extended haloes surrounding the radio source.  相似文献   

17.
We present the results of a K -band imaging survey of 40 arcmin2 in fields around 14 radio-loud active galactic nuclei (AGN), comprising six radio galaxies and eight quasars, with z >1.5. The survey, which is 80 per cent complete to K <19.2 mag and complemented by R -band imaging, aimed at investigating whether extremely red objects are present in excess around high- z AGN, and to study the environment of z >1.5 radio galaxies and radio-loud quasars. At 18< K <19 mag, the differential galaxy counts in our fields suggest a systematic excess over the general field counts. At K <19.2 mag we find an excess of galaxies with R − K >6 in comparison with the general field. Consistently, we also find that the R − K colour distribution of all the galaxies in the AGN fields is significantly redder than the colour distribution of the field galaxies. On the other hand, the distribution of the R − K colours is indistinguishable from that of galaxies taken from literature fields around radio-loud quasars at 1< z <2. We discuss the main implications of our findings and we compare the possible scenarios that could explain our results.  相似文献   

18.
In a previous paper, we have shown that the classical definition of E+A galaxies excludes a significant number of post-starburst galaxies. We suggested that analysing broad-band spectral energy distributions (SEDs) is a more comprehensive method to select and distinguish post-starburst galaxies than the classical definition of measuring equivalent widths of (Hδ) and [O  ii ] lines.
In this paper, we will carefully investigate this new method and evaluate it by comparing our model grid of post-starburst galaxies to observed E+A galaxies from the MORPHS catalogue.
In the first part, we investigate the UV-optical-NIR (near-infrared) SEDs of a large variety in terms of progenitor galaxies, burst strengths and time-scales of post-starburst models and compare them to undisturbed spiral, S0 and E galaxies as well as to galaxies in their starburst phase. In the second part, we compare our post-starburst models with the observed E+A galaxies in terms of Lick indices, luminosities and colours. We then use the new method of comparing the model SEDs with SEDs of the observed E+A galaxies.
We find that the post-starburst models can be distinguished from undisturbed spiral, S0 and E galaxies and galaxies in their starburst phase on the basis of their SEDs. It is even possible to distinguish most of the different post-starbursts by their SEDs. From the comparison with observations, we find that all observed E+A galaxies from the MORPHS catalogue can be matched by our models. However, only models with short decline time-scales for the star formation rate are possible scenarios for the observed E+A galaxies in agreement with our results from the first paper.  相似文献   

19.
We present deep multifrequency observations using the Giant Metrewave Radio Telescope (GMRT) at 153, 244, 610 and 1260 MHz of a field centred on J0916+6348, to search for evidence of fossil radio lobes which could be due to an earlier cycle of episodic activity of the parent galaxy, as well as haloes and relics in clusters of galaxies. We do not find any unambiguous evidence of episodic activity in a list of 374 sources, suggesting that such activity is rare even in relatively deep low-frequency observations. We examine the spectra of all the sources by combining our observations with those from the Westerbork Northern Sky Survey (WENSS), NRAO (National Radio Astronomy Observatories) VLA (Very Large Array) Sky Survey (NVSS) and the Faint Images of the Radio Sky at Twenty-Centimeters Survey (FIRST). Considering only those which have measurements at a minimum of three different frequencies, we find that almost all sources are consistent with a straight spectrum with a median spectral index,  α∼ 0.8 [S(ν) ∝ν−α  ], which appears steeper than theoretical expectations of the injection spectral index. We identify 14 very steep-spectrum sources with  α≥ 1.3  . We examine their optical fields and discuss the nature of some of these sources.  相似文献   

20.
We present William Herschel Telescope spectropolarimetry observations of a complete RA-limited sample of nine low-redshift  (0.05< z <0.2)  3CR radio sources in order to investigate the nature of the ultraviolet (UV) excess in nearby powerful radio galaxies. Of the nine galaxies studied in detail from this sample, we find that four show a measurable UV excess following nebular continuum subtraction, but none of the sources shows significant polarization in the UV. One of the radio galaxies with a UV excess – 3C 184.1 – shows evidence for broad permitted lines and hence direct active galactic nucleus (AGN) light. In the remaining three galaxies we argue that the most likely contributor to the UV excess is a young stellar component. For these three galaxies we find that the best-fitting model for the optical/UV continuum consists of a combination of an old stellar population  (10–15 Gyr  old elliptical galaxy) plus a reddened young stellar population  (0.05–2 Gyr)  . The reddened young stellar component typically accounts for half of the total flux at 4780 Å, following nebular continuum subtraction, and   E ( B - V )  values of between 0.2 and 0.7 mag are required. However, for the majority of sources in our sample (six out of nine), continuum modelling provides no evidence for a significant young stellar component in the nuclear regions of the host galaxies. Our results are discussed in the context of far-infrared evidence for star formation activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号