首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We present suggestive evidence for an inverse energy cascade within Jupiter’s atmosphere through a calculation of the power spectrum of its kinetic energy and its cloud patterns. Using Cassini observations, we composed full-longitudinal mosaics of Jupiter’s atmosphere at several wavelengths. We also utilized image pairs derived from these observations to generate full-longitudinal maps of wind vectors and atmospheric kinetic energy within Jupiter’s troposphere. We computed power spectra of the image mosaics and kinetic energy maps using spherical harmonic analysis. Power spectra of Jupiter’s cloud patterns imaged at certain wavelengths resemble theoretical spectra of two-dimensional turbulence, with power-law slopes near −5/3 and −3 at low and high wavenumbers, respectively. The slopes of the kinetic energy power spectrum are also near −5/3 at low wavenumbers. At high wavenumbers, however, the spectral slopes are relatively flatter than the theoretical prediction of −3. In addition, the image mosaic and kinetic energy power spectra differ with respect to the location of the transition in slopes. The transition in slope is near planetary wavenumber 70 for the kinetic energy spectra, but is typically above 200 for the image mosaic spectra. Our results also show the importance of calculating spectral slopes from full 2D velocity maps rather than 1D zonal mean velocity profiles, since at large wavenumbers the spectra differ significantly, though at low wavenumbers, the 1D zonal and full 2D kinetic energy spectra are practically indistinguishable. Furthermore, the difference between the image and kinetic energy spectra suggests some caution in the interpretation of power spectrum results solely from image mosaics and its significance for the underlying dynamics. Finally, we also report prominent variations in kinetic energy within the equatorial jet stream that appear to be associated with the 5 μm hotspots. Other eddies are present within the flow collar of the Great Red Spot, suggesting caution when interpreting snapshots of the flow inside these features as representative of a time-averaged state.  相似文献   

2.
Ozone is an important observable tracer of martian photochemistry, including odd hydrogen (HOx) species important to the chemistry and stability of the martian atmosphere. Infrared heterodyne spectroscopy with spectral resolution ?106 provides the only ground-based direct access to ozone absorption features in the martian atmosphere. Ozone abundances were measured with the Goddard Infrared Heterodyne Spectrometer and the Heterodyne Instrument for Planetary Wind and Composition at the NASA Infrared Telescope Facility on Mauna Kea, Hawai'i. Retrieved total ozone column abundances from various latitudes and orbital positions (LS=40°, 74°, 102°, 115°, 202°, 208°, 291°) are compared to those predicted by the first three-dimensional gas phase photochemical model of the martian atmosphere [Lefèvre, F., Lebonnois, S., Montmessin, F., Forget, F., 2004. J. Geophys. Res. 109, doi:10.1029/2004JE002268. E07004]. Observed and modeled ozone abundances show good agreement at all latitudes at perihelion orbital positions (LS=202°, 208°, 291°). Observed low-latitude ozone abundances are significantly higher than those predicted by the model at aphelion orbital positions (LS=40°, 74°, 115°). Heterogeneous loss of odd hydrogen onto water ice cloud particles would explain the discrepancy, as clouds are observed at low latitudes around aphelion on Mars.  相似文献   

3.
In this work we analyze the spatial structure of Jupiter's cloud reflectivity field in order to determine brightness periodicities and power spectra characteristics together with their relationship with Jupiter's dynamics and turbulence. The research is based on images obtained in the near-infrared (∼950 nm), blue (∼430 nm) and near-ultraviolet (∼260 nm) wavelengths with the Hubble Space Telescope in 1995 and the Cassini spacecraft Imaging Science Subsystem in 2000. Zonal reflectivity scans were analyzed by means of spatial periodograms and power spectra. The periodograms have been used to search for waves as a function of latitude. We present the values of the dominant wavenumbers for latitude bands between 32° N and 42° S. The brightness power spectra analysis has been performed in the meridional and zonal directions. The meridional analysis of albedo profiles are close to a k−5 law similarly to the wind profiles at blue and infrared wavelengths, although results differ from that in the ultraviolet. The zonal albedo analysis results in two distributions characterized by different slopes. In the near infrared and blue wavelengths, average spectral slopes are n1=−1.3±0.4 for shorter wavenumbers (k<80), and n2=−2.5±0.7 for greater wavenumbers, whereas for the ultraviolet n1=−1.9±0.4 and n2=−0.7±0.4, possibly showing a different dynamical regime. We find a turning point in the spectra between both regimes at wavenumber k∼80 (corresponding to L∼1000 km) for all wavelengths.  相似文献   

4.
Directional thermal infrared measurements of the martian surface is one of a variety of methods that may be used to characterize surface roughness and slopes at scales smaller than can be obtained by orbital imagery. Thermal Emission Spectrometer (TES) emission phase function (EPF) observations show distinct apparent temperature variations with azimuth and emission angle that are consistent with the presence of warm, sunlit and cool, shaded slopes at typically ∼0.1 m scales. A surface model of a Gaussian distribution of azimuth independent slopes (described by θ-bar) is combined with a thermal model to predict surface temperature from each viewing angle and azimuth of the TES EPF observation. The models can be used to predict surface slopes using the difference in measured apparent temperature from 2 separate 60-70° emission angle observations taken ∼180° in azimuth relative to each other. Most martian surfaces are consistent with low to moderate slope distributions. The slope distributions display distinct correlations with latitude, longitude, and albedo. Exceptionally smooth surfaces are located at lower latitudes in both the southern highlands as well as in high albedo dusty terrains. High slopes are associated with southern high-latitude patterned ground and north polar sand dunes. There is little apparent correlation between high resolution imagery and the derived θ-bar, with exceptions such as duneforms. This method can be used to characterize potential landing sites by assuming fractal scaling behavior to meter scales. More precisely targeted thermal infrared observations from other spacecraft instruments are capable of significantly reducing uncertainty as well as reducing measurement spot size from 10s of kilometers to sub-kilometer scales.  相似文献   

5.
Michael D Smith 《Icarus》2004,167(1):148-165
We use infrared spectra returned by the Mars Global Surveyor Thermal Emission Spectrometer (TES) to retrieve atmospheric and surface temperature, dust and water ice aerosol optical depth, and water vapor column abundance. The data presented here span more than two martian years (Mars Year 24, Ls=104°, 1 March 1999 to Mars Year 26, Ls=180°, 4 May 2003). We present an overview of the seasonal (Ls), latitudinal, and longitudinal dependence of atmospheric quantities during this period, as well as an initial assessment of the interannual variability in the current martian climate. We find that the perihelion season (Ls=180°-360°) is relatively warm, dusty, free of water ice clouds, and shows a relatively high degree of interannual variability in dust optical depth and atmospheric temperature. On the other hand, the aphelion season (Ls=0°-180°) is relatively cool, cloudy, free of dust, and shows a low degree of interannual variability. Water vapor abundance shows a moderate amount of interannual variability at all seasons, but the most in the perihelion season. Much of the small amount of interannual variability that is observed in the aphelion season appears to be caused by perihelion-season planet-encircling dust storms. These dust storms increase albedo through deposition of bright dust on the surface causing cooler daytime surface and atmospheric temperatures well after dust optical depth returns to prestorm values.  相似文献   

6.
Slope streaks are gravity-driven albedo features observed on martian slopes since the Viking missions. The debated mechanism of formation could involve alternatively dry granular flow or wet mass wasting. A systematic mapping of slope streaks from the High Resolution Stereo Camera is presented in this paper. Two regions known for their slope streaks activity have been studied, the first one is located close to Cerberus lava flow, and the second one is inside the Olympus Mons Aureole. The statistics of slope streaks shapes measured from orthorectified images confirm previous results from Mars Orbiter Camera surveys. Preferential orientations of slope streaks are reported. Slope streaks occur preferentially on west facing slopes at latitudes lower than 30° N for Olympus and on south-west facing slopes for Cerberus. Wind directions derived from a General Circulation Model during the dusty season correlate with these orientations. Furthermore, west facing slopes at Olympus have a thicker dust cover. These observations indicate that slope streaks are dust avalanches controlled by the preferential accumulation of dust in the downstream side of the wind flow. The paucity of slope streaks at high latitudes and their preferential orientation on south-facing slopes have been presented as an evidence for a potential role of H2O phase transition in triggering or flow. The potential role of H2O cannot be ruled out from our observations but the dust avalanche model together with the atmospheric circulation could potentially explain all observations. The role of H2O might be limited to a stabilizing effect of dust deposits on northward facing slopes at intermediate latitudes (30° N-33° N) and on all slopes further north.  相似文献   

7.
L. Montabone  S.R. Lewis  D.P. Hinson 《Icarus》2006,185(1):113-132
We describe an assimilation of thermal profiles below about 40 km altitude and total dust opacities into a general circulation model (GCM) of the martian atmosphere. The data were provided by the Thermal Emission Spectrometer (TES) on board the Mars Global Surveyor (MGS) spacecraft. The results of the assimilation are verified against an independent source of contemporaneous data represented by radio occultation measurements with an ultra-stable radio oscillator, also aboard MGS. This paper describes a comparison between temperature profiles retrieved by the radio occultation experiments and the corresponding profiles given by both an independent, carefully tuned GCM simulation and by an assimilation of TES observations performed over the period of time from middle, northern summer in martian year 24, corresponding to May 1999, until late, northern spring in martian year 27, corresponding to August 2004. This study shows that the assimilation of TES measurements improves the overall agreement between radio occultation observations and the GCM analysis, in particular below 20 km altitude, where the radio occultation measurements are known to be most accurate. Discrepancies still remain, mostly during the global dust storm of year 2001 and at latitudes around 60° N in northern winter-early spring. These are the periods of time and locations, however, for which discrepancies between TES and radio occultation profiles are also shown to be the largest. Finally, a further direct validation is performed, comparing stationary waves at selected latitudes and time of year. Apart from biases at high latitudes in winter time, data assimilation is able to represent the correct wave behaviour, which is one major objective for martian assimilation.  相似文献   

8.
Joshua L. Bandfield 《Icarus》2009,202(2):414-8420
Slopes are present in martian apparent surface emissivity observations collected by the Thermal Emission Spectrometer (TES) and the Thermal Emission Imaging System (THEMIS). These slopes are attributed to misrepresenting the surface temperature, either through incorrect assumptions about the maximum emissivity of surface materials or the presumption of a uniform surface temperature within the field of view. These incorrect assumptions leave distinct characteristics in the resulting apparent emissivity data that can be used to gain a better understanding of the surface properties. Surfaces with steep slopes typically have a variable surface temperatures within the field of view that cause distinct and highly variable slopes in apparent emissivity spectra based on the observing conditions. These properties are documented on the southwestern flank of Apollinaris Patera and can be reasonably approximated by modeled data. This spectral behavior is associated with extremely rough martian surfaces and includes surfaces south of Arsia Mons and near Warrego Valles that also appear to have high slopes in high resolution images. Surfaces with low maximum values of emissivity have apparent emissivity spectra with more consistent spectral slopes that do not vary greatly based on observing conditions. This spectral surface type is documented in Terra Serenum and is consistent with associated high resolution images that do not indicate the presence of a surface significantly rougher that the surrounding terrain.  相似文献   

9.
Long-term spectroscopic observations of the O2 dayglow at 1.27 μm result in a map of the latitudinal and seasonal behavior of the dayglow intensity for the full martian year. The O2 dayglow is a sensitive tracer of Mars' photochemistry, and this map reflects variations of Mars' photochemistry at low and middle latitudes. It may be used to test photochemical models. Long-term observations of the CO mixing ratio have been also combined into the seasonal-latitudinal map. Seasonal and latitudinal variations of the mixing ratios of CO and the other incondensable gases (N2, Ar, O2, and H2) discovered in our previous work are caused by condensation and sublimation of CO2 to and from the polar regions. They reflect dynamics of the atmosphere and polar processes. The observed map may be used to test global circulation models of the martian atmosphere. The observed global abundances of CO are in reasonable agreement with the predicted variations with the 11-year solar cycle. Despite the perfect observing conditions, methane has not been detected using the IRTF/CSHELL with a 3σ upper limit of 14 ppb. This upper limit does not rule out the value of 10 ppb observed using the Canada-France-Hawaii Telescope and the Mars Express Planetary Fourier Spectrometer.  相似文献   

10.
To simulate the formation of impact glasses on Mars, an analogue of martian bright soil (altered volcanic soil JSC Mars-1) was melted at relevant oxygen fugacities using a pulsed laser and a resistance furnace. Reduction of Fe3+ to Fe2+ and in some cases formation of nanophase Fe0 in the glasses were documented by Mössbauer spectroscopy and TEM studies. Reflectance spectra for several size fractions of the JSC Mars-1 sample and the glasses were acquired between 0.3 and 25 μm. The glasses produced from the JSC Mars-1 soil show significant spectral variability depending on the method of production and the cooling rate. In general, they are dark and less red in the visible compared to the original JSC Mars-1 soil. Their spectra do not have absorption bands due to bound water and structural OH, have positive spectral slopes in the near-infrared range, and show two broad bands centered near 1.05 and 1.9 μm, typical of glasses rich in ferrous iron. The latter bands and low albedo partly mimic the spectral properties of martian dark regions, and may easily be confused with mafic materials containing olivine and low-Ca pyroxene. Due to their disordered structures and vesicular textures, the glasses show relatively weak absorption features from the visible to the thermal infrared. These weak absorption bands may be masked by the stronger bands of mafic minerals. Positive near-infrared spectral slopes typical of fresh iron-bearing impact or volcanic glasses may be masked either by oxide/dust coatings or by aerosols in the Mars' atmosphere. As a result, impact glasses may be present on the surface of Mars in significant quantities that have been either misidentified as other phases or masked by phases with stronger infrared features. Spectrometers with sufficient spatial resolution and wavelength coverage may detect impact glasses at certain locations, e.g., in the vicinity of fresh impact craters. Such dark materials are usually interpreted as accumulations of mafic volcanic sand, but the possibility of an impact melt origin of such materials also should be considered. In addition, our data suggest that high contents of feldspars or zeolites are not necessary to produce the transparency feature at 12.1 μm typical of martian dust spectra.  相似文献   

11.
The Goldstone radar system was operated at wavelengths of 3.5 and 12.6 cm to probe the Martian surface during the 1975 opposition. Regions studied in detail by range-Doppler techniques are Syrtis Major, Sinus Meridiani, and the crater Schiaparelli. Average rms slopes of 1.6° and 1.1° were measured in Syrtis Major at 3.5 and 12.6 cm, respectively, while the average reflectivity was 0.064 ± 0.02 at both wavelengths. No wavelength dependence of surface roughness was seen in Sinus Meridiani, where rms surface slopes averaged 1.8° and the reflectivity was 0.08 ± 0.02. The regions around Schiaparelli were probed at a 12.6-cm wavelength. The echo from the bottom of the crater was undetectable. Hence ρ0C < 25, where ρ0 is the reflectivity and C is the Hagfors roughness parameter. Operating at 3.5 cm during May and June of 1976, 149 continous-wave echo spectra were obtained near latitude 18°, sampling most longitudes including the early Viking landing sites A1 and A2. The average total radar cross section is 4.8% of the geometrical cross section. The diffuse component was estimated to be 1.9%, leaving 2.9% to the average quasi-specular component. The average rms slope is 4.1°. Six spectra obtained at site A1 indicate that rms slopes are 5 to 9° between latitudes 17 and 19°. Three spectra obtained at s site A2 indicate an rms slope of 3.9°.  相似文献   

12.
We have analyzed the temperature retrievals from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) nadir spectra to yield latitude-height resolved maps of various atmospheric forced wave modes as a function of season for a full Mars year. Among the isolated wave modes is the zonal mean, time mean temperature, which we used to derive zonal mean zonal winds and stationary wave quasi-geostrophic indices of refraction, diagnostic of their propagation. The diurnal Kelvin wave was isolated in the data, with results roughly consistent with models (Wilson and Hamilton, 1996, J. Atmos. Sci. 33, 1290-1326). The s = 1 and s = 2 stationary waves were found to have significant amplitude in ducts extending up the winter polar jets, while the s = 3 stationary wave was found to be confined to near the surface. The s = 1 stationary wave was found to have little phase tilt with height during northern winter, but significant westward phase tilt with height in the southern winter. This indicates that the wave carries heat poleward, slightly more than that found in Barnes et al. (1996; J. Geophys. Res. 101, 12,753-12,776). The s = 1 stationary wave is likely the dominant mechanism for eddy meridional heat transport for the southern winter. We noted that the phase of the s = 2 stationary wave is nearly constant with time, but that the s = 1 stationary wave moved 90° of longitude from fall to winter and back in spring in the North. While interannual variability is not yet addressed, overall, these results provide the first comprehensive benchmark for forced waves in Mars’s atmosphere against which future atmospheric models of Mars can be compared.  相似文献   

13.
Venus cloud covered atmosphere offers a well-suited framework to study the coupling between the atmospheric dynamics and the structure of the cloud field. Violet images obtained during the Galileo flyby from 12 to 17 February 1990 have been analyzed to retrieve the zonal power spectra of the cloud brightness distribution field between latitudes 70° N and 50° S. The brightness distribution spectra serve as a diagnostic of the eddy kinetic energy spectrum providing indirect information about the distribution of energy along different spatial scales. We composed images covering a full rotation of the atmosphere at the level of the UV contrasted clouds obtaining maps of almost 360° that allowed us to obtain the brightness power spectra from wavenumbers k=1 to 50. A full analysis of the spectrum slope for different latitude bands and ranges of wave numbers is presented. The power spectra follow a classical law kn with exponent n ranging from −1.7 to −2.9 depending on latitude and the wavenumber range. For the whole planet, the average of this parameter is −2.1 intermediate between those predicted by the classical turbulence theories for three- and two-dimensional motions (n=−5/3 and n=−3). A comparison with previous analysis of Mariner 10 (in 1974) and Pioneer Venus (in 1979) shows significant temporal changes in the cloud global structure and in the turbulence characteristics of the atmosphere.  相似文献   

14.
New results from a 1 Gyr integration of the martian orbit are presented along with a seasonally resolved energy balance climate model employed to illuminate the gross characteristics of the long-term atmospheric pressure evolution. We present a new analysis of the statistical variation of the martian obliquity and precession prior to and subsequent to the formation of the Tharsis uplift, and explore the long term effects on the martian climate. We find that seasonal polar cycles have a critical influence on the ability for the regolith to release CO2 at high obliquities, and find that the atmospheric CO2 actually decreases at high obliquities due to the cooling effect of polar deposits at latitudes where seasonal caps form. At low obliquity, the formation of massive, permanent polar caps depends critically on the values of the frost albedo, Afrost, and frost emissivity, ?frost. Using our model with values of Afrost=0.67 and ?frost=0.55, matched to the NASA Ames General Circulation Model (GCM) results (Haberle et al., 1993, J. Geophys. Res. 98, 3093-3123, and Haberle et al., 2003, Icarus 161, 66-89), we find that permanent caps only form at low obliquities (<13°), suggesting that any permanent deposits on the surface of Mars today may be residuals left over from a period of very low obliquity, or are the result of mechanisms not represented by this model. Thus, contrary to expectations, the martian atmospheric pressure is remarkable static over time, and decreases both at high and low obliquity. Also, from our one billion year orbital model, we present new results on the fraction of time Mars is expected to experience periods of low obliquity and high obliquity.  相似文献   

15.
Bruce A. Cantor 《Icarus》2007,186(1):60-96
From 15 September 1997 through 21 January 2006, only a single planet-encircling martian dust storm was observed by MGS-MOC. The onset of the storm occurred on 26 June 2001 (Ls=184.7°), earliest recorded to date. It was initiated in the southern mid-to-low latitudes by a series of local dust storm pulses that developed along the seasonal cap edge in Malea and in Hellas basin (Ls=176.2°-184.4°). The initial expansion of the storm, though asymmetric, was very rapid in all directions (3-32 m s−1). The main direction of propagation, however, was to the east, with the storm becoming planet encircling in the southern hemisphere on Ls=192.3°. Several distinct centers of active dust lifting were associated with the storm, with the longest persisting for 86 sols (Syria-Claritas). These regional storms helped generate and sustain a dust cloud (“haze”), which reached an altitude of about 60 km and a peak opacity of τdust∼5.0. By Ls=197.0°, the cloud had encircled the entire planet between 59.0° S and 60.0° N, obscuring all but the largest volcanoes. The decay phase began around Ls∼200.4° with atmospheric dust concentrations returning to nominal seasonal low-levels at Ls∼304.0°. Exponential decay time constants ranged from 30-117 sols. The storm caused substantial regional albedo changes (darkening and brightening) as a result of the redistribution (removal and deposition) of a thin veneer of surface dust at least 0.1-11.1 μm thick. It also caused changes in meteorological phenomena (i.e., dust storms, dust devils, clouds, recession of the polar caps, and possibly surface temperatures) that persisted for just a few weeks to more than a single Mars year. The redistribution of dust by large annual regional storms might help explain the long period (∼30 years) between the largest planet-encircling dust storms events.  相似文献   

16.
We report observations of Icelandic hillside gully systems that are near duplicates of gullies observed on high-latitude martian hillsides. The best Icelandic analogs involve basaltic talus slopes at the angle of repose, with gully formation by debris flows initiated by ground water saturation, and/or by drainage of water from upslope cliffs. We report not only the existence of Mars analog gullies, but also an erosional sequence of morphologic forms, found both on Mars and in Iceland. The observations support hypotheses calling for creation of martian gullies by aqueous processes. Issues remain whether the water in each case comes only from surficial sources, such as melting of ground ice or snow, or from underground sources such as aquifers that gain surface access in hillsides. Iceland has many examples of the former, but the latter mechanism is not ruled out. Our observations are consistent with the martian debris flow mechanism of F. Costard et al. (2001c, Science295, 110-113), except that classic debris flows begin at midslope more frequently than on Mars. From morphologic observations, we suggest that some martian hillside gully systems not only involve significant evolution by extended erosive activity, but gully formation may occur in episodes, and the time interval since the last episode is considerably less than the time interval needed to erase the gully through normal martian obliteration processes.  相似文献   

17.
Power spectra of vector components of interplanetary magnetic field fluctuations near 4–5 a.u. during quiet intervals show a frequency dependence very close to fs over the frequency range 4 × 10?5 to 9 × 10?3 Hz (corresponding to periods of 7 h-2 min). While the spectra are generally very close to power law in frequency, variations in slope among the spectra exceed those expected from random errors and may represent true temporal variations. Mean slopes corrected for systematic error are s = ? 1.50±0.02 (Pioneer 10, mean heliocentric distance 5.3 a.u.) and s = ? 1.52±0.02 (Pioneer 11, mean heliocentric distance 3.9 a.u.) and are consistent with several determinations of spectral slope for magnetic fluctuations near 1 a.u. Radial evolution of the perturbations is investigated by choosing data samples in which Pioneer 10 and 11 and the sun are nearly colinear. The dependence on heliocentric distance of σc2, the composite vector variance, and of σc/Bmag, where Bmag is the mean magnitude of the magnetic field, show that the radial variation of fluctuation amplitude is highly variable in time with a dependence on heliocentric distance typically in the range R?1 to R?1.5. These observations are compared with theoretical models of outward propagating Alfven waves of solar origin and of MHD turbulence. The mean slopes agree well with that expected for turbulence. The significant variability observed in spectral slopes and in the radial dependence of fluctuation amplitude in data selected specifically for conditions of relative magnetic quiet is noteworthy and urges caution in modeling heliospheric magnetic microstructure in studies of galactic cosmic ray modulation.  相似文献   

18.
Hathaway  D.H.  Beck  J.G.  Bogart  R.S.  Bachmann  K.T.  Khatri  G.  Petitto  J.M.  Han  S.  Raymond  J. 《Solar physics》2000,193(1-2):299-312
Spectra of the cellular photospheric flows are determined from observations acquired by the MDI instrument on the SOHO spacecraft. Spherical harmonic spectra are obtained from the full-disk observations. Fourier spectra are obtained from the high-resolution observations. The p-mode oscillation signal and instrumental artifacts are reduced by temporal filtering of the Doppler data. The resulting spectra give power (kinetic energy) per wave number for effective spherical harmonic degrees from 1 to over 3000. Significant power is found at all wavenumbers, including the small wavenumbers representative of giant cells. The time evolution of the spectral coefficients indicates that these small wavenumber components rotate at the solar rotation rate and thus represent a component of the photospheric cellular flows. The spectra show distinct peaks representing granules and supergranules but no distinct features at wavenumbers representative of mesogranules or giant cells. The observed cellular patterns and spectra are well represented by a model that includes two distinct modes – granules and supergranules.  相似文献   

19.
There is a significant progress in the observational data relevant to Mars photochemistry in the current decade. These data are not covered by and sometimes disagree with the published models. Therefore we consider three types of models for Mars photochemistry. A steady-state model for global-mean conditions is currently the only way to calculate the abundances of long living species (H2, O2, and CO). However, our model does not fit the observed CO abundance using gas-phase chemistry and reasonable values of heterogeneous loss of odd hydrogen on the water ice aerosol. The second type of the calculated models is steady-state models for local conditions. The MGS/TES data on temperature profiles, H2O, and dust are input parameters for these models. The calculations have been made for nine seasonal points spread over the martian year and for twelve latitudes with a step of 10° for each season. The only adopted heterogeneous reaction is a weak loss of H2O2 on water ice with probability of 5×10−4. The results are in good agreement with the recent observations of the O2 dayglow at 1.27 μm and the O3 and H2O2 abundances. Global maps of the seasonal and latitudinal behavior of these species have been made. The third type of models is a time-dependent model for local conditions. These models show that odd hydrogen quickly converts to H2O2 at the nighttime and the chemistry is switched off while the association of O, the heterogeneous loss of H2O2, and eddy diffusion continue. This requires significant changes in the global-mean and local steady-state models discussed above, and these changes have been properly done. The calculated diurnal variations of Mars photochemistry are discussed. The martian photochemistry at low and middle latitudes is significantly different in the aphelion period at LS=10°-130° from that in the remaining part of the year.  相似文献   

20.
Observations of ozone on Mars were made using the Goddard Space Flight Center's Infrared Heterodyne Spectrometer and Heterodyne Instrument for Planetary Wind and Composition at the NASA Infrared Telescope Facility. Ozone is an important observable tracer of martian photochemistry. Infrared heterodyne spectroscopy with spectral resolution ?106 is the only technique that directly measures ozone in the martian atmosphere from the surface of the Earth. Ozone column abundances down to the martian surface were acquired in seven data sets taken between 1988 and 2003 at various orbital positions (LS=40°, 74°, 102°, 115°, 202°, 208°, 291°). Ozone abundances are compared with those retrieved using ultraviolet techniques, showing good agreement. Odd hydrogen (HOX) chemistry predicts anticorrelation of ozone and water vapor abundances. Retrieved ozone abundances consistently show anticorrelation with corresponding water vapor abundances, providing strong confirmation of odd hydrogen activity. Deviation from strict anticorrelation between the observed total column densities of ozone and water vapor suggests that constituent vertical distribution is an additional, significant factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号