首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
One important, almost ubiquitous, tool for understanding the surfaces of solid bodies throughout the solar system is the study of impact craters. While measuring a distribution of crater diameters and locations is an important tool for a wide variety of studies, so too is measuring a crater's “depth.” Depth can inform numerous studies including the strength of a surface and modification rates in the local environment. There is, however, no standard data set, definition, or technique to perform this data-gathering task, and the abundance of different definitions of “depth” and methods for estimating that quantity can lead to misunderstandings in and of the literature. In this review, we describe a wide variety of data sets and methods to analyze those data sets that have been, are currently, or could be used to derive different types of crater depth measurements. We also recommend certain nomenclature in doing so to help standardize practice in the field. We present a review section of all crater depths that have been published on different solar system bodies which shows how the field has evolved through time and how some common assumptions might not be wholly accurate. We conclude with several recommendations for researchers which could help different data sets to be more easily understood and compared.  相似文献   

2.
We present the first modern systematic study of local brightest cluster galaxy (BCG) profiles that extends to radii beyond 200h -1kpc. Measuring the surface brightness profiles of BCGs out to large radii is critical for understanding the processes driving their formation. The form of the profiles yields information about the current dynamical state, constrains the accretion history of these galaxies, and places limits on any radially symmetric component of intracluster light. The observational challenges associated with CCD photometry at low surface brightness levels have until now precluded such an analysis for a statistical sample of BCGs. Utilizing drift-scan data and new techniques that we have developed, we extend upon previous work by modelling the profiles for a sample of 31 clusters at z≃ that span a wide range in mass and dynamical state. We find that the BCGs in our sample generally are best fit using two-component models consisting of inner and outer Sersic profiles. In this proceeding we present the preliminary results of our analysis and discuss implications for current models of BCG formation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Newly acquired, sequentially spaced, high-resolution near-infrared spectra across the central section of crater Copernicus’ interior have been analyzed using a range of complementary techniques and indexes.We have developed a new interpretative method based on a multiple stage normalization process that appears to both confirm and expand on previous mineralogical estimations and mapping. In broad terms, the interpreted distribution of the principle mafic species suggests an overall composition of surface materials dominated by calcium-poor pyroxenes and minor olivine but with notable exceptions: the southern rim displays strong ca-rich pyroxene absorption features and five other locations, the uppermost northern crater wall, opposite rim sections facing the crater floor, and the central peak Pk1 and at the foot of Pk3, show instead strong olivine signatures.We also propose impact glass an alternative interpretation to the source of the weak but widespread olivine-like spectral signature found in low-reflectance samples, since it probably represents a major regolith constituent and component in large craters such as Copernicus.The high quality and performance of the SIR-2 data allows for the detection of diagnostic key mineral species even when investigating spectral samples with very subdued absorption features, confirming the intrinsic high-quality value of the returned data.  相似文献   

4.
We report an Australia Telescope Compact Array (ATCA) radio‐continuum observations of 26 planetary nebulae (PNe) at wavelengths of 3 and 6 cm. This sample of 26 PNe were taken from the Macquarie/AAO/Strasbourg Hα PNe (MASH) catalogue and previous lists. We investigate radio detection quality including measured and derived parameters for all detected or marginally detected PNe from this combined sample. Some 11 objects from the observed sample have been successfully detected and parametrized. Except for one, all detected PNe have very low radio surface brightnesses. We use a statistical distance scale method to calculate distances and ionised masses of the detected objects. Nebulae from this sample are found tobe large (>0.2 pc in diameter) and highly diluted which indicates old age. For 21 PNe from this sample we list integrated Hα fluxes and interstellar extinction coefficients, either taken from the literature or derived here from the Balmer decrement and radio to Hα ratio methods. Finally, our detected fraction of the MASH pilot sample is relatively low compared to the non‐MASH sub‐sample. We conclude that future radio surveys of the MASH sample must involve deeper observations with better uv coverage in order to increase the fraction of detected objects and improve the quality of the derived parameters (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Collisions are a fundamental process in the creation of asteroid families and in satellite formation. For this reason, understanding the outcome of impacts is fundamental to the accurate modeling of the formation and evolution of such systems. Smoothed-Particle Hydrodynamics/N-body codes have become the techniques of choice to study large-scale impact outcomes, including both the fragmentation of the parent body and the gravitational interactions between fragments. It is now possible to apply this technique to targets with either monolithic or rubble-pile internal structures. In this paper we apply these numerical techniques to rubble-pile targets, extending previous investigations by Durda et al. (Durda, D.D., Bottke, W.F., Enke, B.L., Merline, W.J., Asphaug, E., Richardson, D.C., Leinhardt, Z.M. [2004]. Icarus 170, 243–257; Durda, D.D., Bottke, W.F., Nesvorný, D., Enke, B.L., Merline, W.J., Asphaug, E., Richardson, D.C. [2007]. Icarus 186, 498–516). The goals are to study asteroid–satellite formation and the morphology of the size–frequency distributions (SFDs) from 175 impact simulations covering a range of collision speeds, impact angles, and impactor sizes. Our results show that low-energy impacts into rubble-pile and monolithic targets produce different features in the resulting SFDs and that these are potentially diagnostic of the initial conditions for the impact and the internal structure of the parent bodies of asteroid families. In contrast, super-catastrophic events (i.e., high-energy impacts with large specific impact energy) result in SFDs that are similar to each other. We also find that rubble-pile targets are less efficient in producing satellites than their monolithic counterparts. However, some features, such as the secondary-to-primary diameter ratio and the relative separation of components in binary systems, are similar for these two different internal structures of parent bodies.  相似文献   

6.
Abstract— In recent years, morphometric data for Venus and several outer planet satellites have been collected, so we now have observational data of complex craters formed in a large range of target properties. We present general inversion techniques that can utilize the morphometric data to quantitatively test various models of complex crater formation. The morphometric data we use in this paper are depth of a complex crater, the diameter at which the depth-diameter ratio changes, and onset diameters for central peaks, terraces, and peak rings. We tested the roles of impactor velocities and hydrostatic pressure vs. crustal strength, and we tested the specific models of acoustic fluidization (Melosh, 1982) and nonproportional growth (Schultz, 1988). Neither the acoustic fluidization model nor the nonproportional growth in their published formulations are able to successfully reproduce the data. No dependence on impactor velocity is evident from our inversions. Most of the morphometric data is consistent with a linear dependence on the ratio of crustal strength to hydrostatic pressure on a planet, or the factor c/p g.  相似文献   

7.
New information has been obtained in recent years regarding formation rates and the production size‐frequency distribution (PSFD) of decameter‐scale primary Martian craters formed during recent orbiter missions. Here we compare the PSFD of the currently forming small primaries (P) with new data on the PSFD of the total small crater population that includes primaries and field secondaries (P + fS), which represents an average over longer time periods. The two data sets, if used in a combined manner, have extraordinary potential for clarifying not only the evolutionary history and resurfacing episodes of small Martian geological formations (as small as one or few km2) but also possible episodes of recent climatic change. In response to recent discussions of statistical methodologies, we point out that crater counts do not produce idealized statistics, and that inherent uncertainties limit improvements that can be made by more sophisticated statistical analyses. We propose three mutually supportive procedures for interpreting crater counts of small craters in this context. Applications of these procedures support suggestions that topographic features in upper meters of mid‐latitude ice‐rich areas date only from the last few periods of extreme Martian obliquity, and associated predicted climate excursions.  相似文献   

8.
Abstract— We have conducted 40Ar/39Ar age dating on a sample of impact melt from the Gardnos impact structure in Norway in an attempt to better constrain the formation age of the crater. Current estimates of the age of the Gardnos crater cover a wide range and are as old as 900 Ma (Dons and Naterstad, 1992; French et al., 1997). The age spectra that we obtained from three samples are consistent with a thermal event at 385 ± 5 Ma (1σ). Because this differs greatly from the best stratigraphic age of ~600 Ma, and because the minerals present in the dated sample are a metamorphic assemblage, we believe we have not dated the formation age of the crater. Instead we have probably dated the effect of the early Devonian collapse of the late Caledonian (Scandian) orogeny on these materials (Dons and Naterstad, 1992; French et al., 1997). Although it may be possible, it will be difficult to determine the age of the impact by isotopic means alone because of this widespread metamorphism. Detailed stratigraphic analyses of the crater fill sediments may be the most promising method for constraining the crater age.  相似文献   

9.
We investigate the elevated crater rims of lunar craters. The two main contributors to this elevation are a structural uplift of the preimpact bedrock and the emplacement of ejecta on top of the crater rim. Here, we focus on five lunar complex mare craters with diameters ranging between 16 and 45 km: Bessel, Euler, Kepler, Harpalus, and Bürg. We performed 5281 measurements to calculate precise values for the structural rim uplift and the ejecta thickness at the elevated crater rim. The average structural rim uplift for these five craters amounts to SRU = 70.6 ± 1.8%, whereas the ejecta thickness amounts to ET = 29.4 ± 1.8% of the total crater rim elevation. Erosion is capable of modifying the ratio of ejecta thickness to structural rim uplift. However, to minimize the impact of erosion, the five investigated craters are young, pristine craters with mostly preserved ejecta blankets. To quantify how strongly craters were enlarged by crater modification processes, we reconstructed the dimensions of the transient crater. The difference between the transient crater diameter and the final crater diameter can extend up to 11 km. We propose reverse faulting and thrusting at the final crater rim to be one of the main contributing factors of forming the elevated crater rim.  相似文献   

10.
11.
Abstract— We report the noble gas isotopic abundances of five dimict breccias and one cataclastic anorthosite that were collected at the Apollo 16 landing site. Orbital and surface photographs indicate that rays from South Ray crater, an almost 1 km wide young crater in the Cayley plains, extend several kilometers from their source into the area that was sampled by the Apollo 16 mission. Previous studies have shown that South Ray crater formed 2 Ma ago and that a large number of rocks might originate from this cratering event. On the basis of cosmic-ray produced nuclei, we find that the six rocks investigated in this work yield the same lunar surface exposure age. Using literature data, we recalculate the exposure ages of additional 16 rocks with suspected South Ray crater origin and obtain an average exposure age of 2.01 ± 0.10 Ma. In particular, all nine dimict breccias (a type of rock essentially restricted to the Apollo 16 area consisting of anorthosite and breccia phases) dated until now yield an average ejection age of 2.06 ± 0.17 Ma. We conclude that they must originate from the Cayley formation or from bedrock underlying the Cayley plain. We determined the gas retention ages for the dimict breccias based on the 40K-40Ar and U,Th-136Xe dating methods: rock 64425 yields a 40K-40Ar age of 3.96 Ga and rock 61016 a U,Th-136Xe age of 3.97 Ga. These results, together with 39Ar-40Ar ages obtained by other workers for rocks 64535 (3.98 Ga) and 64536 (3.97 Ga), show that the dimict breccias formed 3.97 Ga ago.  相似文献   

12.
Recently a number of studies have identified small lunar geologic structures to be <100 Ma in age using standard remote sensing techniques. Here we present new crater size frequency distributions (CSFDs) and model ages using craters D > 10 m for five small target units: one irregular mare patch (IMP) in Mare Nubium and four regions located on lunar wrinkle ridges in Mare Humorum. For comparison we also date another IMP found in a recent study in Mare Tranquillitatis (Braden et al. 2014 ). Absolute model age (AMA) derivation corresponds to 46 ± 5 Ma and 22 ± 1 Ma for Nubium and Sosigenes IMP, respectively. We show that for IMPs and in nearby control mare regions, similar production-like cumulative log–log SFD slopes of −3 are observed. In contrast, control mare regions in Mare Humorum exhibit shallower equilibrium slopes from −1.83 to −2. Three out of four wrinkle ridges appear to be in equilibrium but with crater lifetimes lower than on the corresponding maria. Low crater frequencies on one wrinkle ridge result in an age of 8.6 ± 1 Ma. This study region contains 80% fresh craters, which suggests that the crater population is still in production indicative of a recent resurfacing event.  相似文献   

13.
S.C. Tegler  W. Romanishin 《Icarus》2003,161(1):181-191
Four years ago, we reported that the surface colors of ancient, icy bodies at and beyond the orbit of Neptune—Kuiper belt objects— divide into two distinct color populations. Our report has proven quite controversial. Specifically, every other research group looking with large telescopes at Kuiper belt objects finds a continuous range of colors rather than two distinct populations. Here we report new color measurements of 18 objects, primarily from the Keck I 10-m telescope, that confirm the existence of two populations. We have combined the color measurements of the other groups to create a data set comparable in size to our data set. We have carried out a Monte Carlo statistical analysis and found that both data sets are consistent with two color populations and our data set, which has smaller uncertainties, rules out a continuum of colors. In addition, our new observations and those in the literature confirm our earlier report that classical KBOs with perihelion distances beyond 40 AU exhibit extremely red surface colors. Our results rule out a continuous color distribution for both our complete sample and subsamples with perihelion distances greater than or less than 40 AU. We suspect the color patterns will result in a better understanding of the formation and evolution of the outer Solar System.  相似文献   

14.
Abstract— We present numerical simulations of crater formation under Martian conditions with a single near‐surface icy layer to investigate changes in crater morphology between glacial and interglacial periods. The ice fraction, thickness, and depth to the icy layer are varied to understand the systematic effects on observable crater features. To accurately model impact cratering into ice, a new equation of state table and strength model parameters for H2O are fitted to laboratory data. The presence of an icy layer significantly modifies the cratering mechanics. Observable features demonstrated by the modeling include variations in crater morphometry (depth and rim height) and icy infill of the crater floor during the late stages of crater formation. In addition, an icy layer modifies the velocities, angles, and volumes of ejecta, leading to deviations of ejecta blanket thickness from the predicted power law. The dramatic changes in crater excavation are a result of both the shock impedance and the strength mismatch between layers of icy and rocky materials. Our simulations suggest that many of the unusual features of Martian craters may be explained by the presence of icy layers, including shallow craters with well‐preserved ejecta blankets, icy flow related features, some layered ejecta structures, and crater lakes. Therefore, the cratering record implies that near‐surface icy layers are widespread on Mars.  相似文献   

15.
Abstract— Using detailed geological, petrographic, geochemical, and geographical constraints we have performed numerical modeling studies that relate the Steinheim crater (apparent diameter Da = 3.8 km), the Ries crater (Da = 24 km) in southern Germany, and the moldavite (tektite) strewn field in Bohemia and Moravia (Czech Republic), Lusatia (East Germany), and Lower Austria. The moldavite strewn field extends from ~200 to 450 km from the center of the Ries to the east‐northeast forming a fan with an angle of ~57°. An oblique impact of a binary asteroid from a west‐southwest direction appears to explain the locations of the craters and the formation and distribution of the moldavites. The impactor must have been a binary asteroid with two widely separated components (some 1.5 and 0.15 km in diameter, respectively). We carried out a series of three‐dimensional hydrocode simulations of a Ries‐type impact. The results confirm previous results suggesting that impacts around 30–50° (from the horizontal) are the most favorable angles for near‐surface melting, and, consequently for the formation of tektites. Finally, modeling of the motion of impact‐produced tektite particles through the atmosphere produces, in the downrange direction, a narrow‐angle distribution of the moldavites tektites in a fan like field with an angle of ~75°. An additional result of modeling the motion of melt inside and outside the crater is the preferred flow of melt from the main melt zone of the crystalline basement downrange towards the east‐northeast rim. This explains perfectly the occurrence of coherent impact melt bodies (some tens of meters in size) in a restricted zone of the downrange rim of the Ries crater. The origin of these melt bodies, which represent chemically a mixture of crystalline basement rocks similar to the main melt mass contained (as melt particles <0.5 m in size) in the suevite, do not occur at any other portion of the Ries crater rim and remained enigmatic until now. Although the calculated distribution of moldavites still deviates to some degree from the known distribution, our results represent an important step toward a better understanding of the origin and distribution of the high‐velocity surface melts and the low‐velocity, deep‐seated melt resulting from an oblique impact on a stratified target.  相似文献   

16.
Abstract– We examine Martian northern high‐latitude and polar impact craters (NPICs) to better understand the north polar materials and polar processes. We examine topographic characteristics for 346 NPICs and compare them to global fit data (e.g., Garvin et al. 2003 ; Boyce and Garbeil 2007 ) as well as to a small set (N = 92) of southern high‐latitude and polar impact craters (SPICs). We find that the NPIC population above 57° N is significantly shallower than the global crater population. This suggests that the NPICs (1) were initially shallow due to target properties of polar geologic units; (2) were once deeper, but have been infilled due to polar processes; or (3) a combination of both. Indeed, many of the NPICs exhibit considerable noncentral peak interior topographic features (IFTs), which may be indicative of infilling processes. The NPIC IFTs also appear to display trends in their preferential orientation within the crater cavity; some SPICs display similar interior features, but do not show a clear preference in their orientation within the crater cavity. In addition, the NPIC population displays cavity wall slope trends that seem to indicate steepening of slopes with increasing crater diameter in comparison to the global slope trend ( Garvin et al. 2003 ). These trends suggest that the NPICs are unique in their geometry when compared to the global data set as well as with the SPICs further indicating that the north polar region may exhibit target properties and polar processes not seen in the south polar region or elsewhere on Mars.  相似文献   

17.
In order to study the geomorphic evolution and lifetimes of lunar craters, data were collected from (i) 32mare andterra provinces of the nearside of the Moon using the L.P.L. catalog; (ii) amare area in Sinus Medii, using direct observations of Lunar Orbiter photos, and (iii) aterra area on the farside using direct observations of Zond-8 photos. The theory presented in a previous publication is expanded and applied to the data.The following conclusions are obtained. (1) Steady-state conditions occur on the studiedmare surfaces for craters of diameter up to approximately 220 m, and on the studiedterra surfaces for craters of diameter up to at least 50 km. (2) The average lifetime of a crater, in addition of being a function of the meteoroidal flux, is a steep function of the diameter of the crater. (3) The correlation is good between a geomorphic classification of craters based on visual comparison with standard craters and a classification of craters based on their depth-diameter ratio, resulting in a coefficient of rank correlation of 0.64. (4) When craters are classified as young, mature, and old, the length of time spent as young is less than a few percent of the total lifetime of the crater; the time spent as mature is 10 to 30%; and as much as 80% is spent as an old crater. Within the error of the calculations, these values are independent of crater diameter and apply to both pre-mare and post-mare craters, indicating that they are also independent of the intensity of the meteoroidal flux. (5) The average lifetime of a 50 km crater in pre-mare times is estimated to be less than 0.3×109 years. (6) The average lifetime of a 50 km crater in post-mare times is estimated to be between 3×1011 and 1014 years. (7) The average meteoroidal flux in pre-mare times is estimated to be three to six orders of magnitude more intense than in post-mare times.  相似文献   

18.
Determining absolute surface ages for bodies in the Solar System is, at present, only possible for Earth and Moon with radiometric dating for both bodies and biologic proxies such as fossils for Earth. Relative ages through cratering statistics are recognized as one of the most reliable proxies for relative ages, calibrated by lunar geologic mapping and Apollo program sample returns. In this work, we have utilized the Mars Reconnaissance Orbiter’s ConTeXt Camera’s images which provide the highest resolution wide-scale coverage of Mars to systematically crater-age-date the calderas of 20 of Mars’ largest volcanoes in order to constrain the length of time over which these volcanoes - and major volcanic activity on the planet, by extension - were active. This constitutes the largest uniform and comprehensive research on these features to date, eliminating unknown uncertainties by multiple researchers analyzing different volcanoes with varied data and methods. We confirm previous results that Mars has had active volcanism throughout most of its history although it varied spatially and temporally, with the latest large-scale caldera activity ending approximately 150 ma in the Tharsis region. We find a transition from explosive to effusive eruption style occurring in the Hesperian, at approximately 3.5 Ga ago, though different regions of the planet transitioned at different times. Since we were statistically complete in our crater counts to sizes as small as ∼60 m in most cases, we also used our results to study the importance of secondary cratering and its effects on crater size-frequency distributions within the small regions of volcanic calderas. We found that there is no “golden rule” for the diameters secondaries become important in crater counts of martian surfaces, with one volcano showing a classic field of secondaries ∼2 crater diameters from the center of its primary but not affecting the size-frequency distribution, and another clearly showing an influence but from no obvious primary.  相似文献   

19.
Abstract— The proposed Sirente crater field consists of a slightly oblong main structure (main crater) 120 m in width and about 30 smaller structures (satellite craters), all in unconsolidated but stiff carbonate mud. Here we focus on the subsurface structure of the satellite craters and compare the Sirente field with known meteorite crater fields. We present a more complete outline of the crater field than previously reported, information on the subsurface morphology of a satellite crater (C8) 8 m in width, radiocarbon and thermoluminescence (TL) ages of material from this crater, and evidence for heated material in both crater C8 and the rim of the main crater. Crater C8 has a funnel shape terminating downwards, and evidence for soil injection from the surface to a depth of 9 m. The infill contained dispersed charcoal and small, irregular, porous fragments of heated clay with a calibrated age of b.p. 1712 (13C‐corrected radiocarbon age: b.p. 1800 ± 100) and a TL age of b.p. 1825 (calculated error ± 274). Together with previous radiocarbon age (b.p. 1538) of the formation of the main crater (i.e., target surface below rim), a formation is suggested at the beginning of the first millennium a.d. Although projectile vaporization is not expected in Sirente‐sized craters in this type of target material, we used geochemistry in an attempt to detect a meteoritic component. The results gave no unequivocal evidence of meteoritic material. Nevertheless, the outline of the crater field, evidence of heated material within the craters, and subsurface structure are comparable with known meteorite crater fields.  相似文献   

20.
We examine the nature of the surface layer in Gale Crater as determined from high-resolution thermal and visible Mars Odyssey Thermal Emission Imaging System (THEMIS) data as well as how our conclusions compare to past analyses. At THEMIS resolution, the thermal surface structure is dominated by local control, thus providing us with detailed images that contain thermophysical information as well. Using these data sets we have created a map of the area, defining units based primarily on their geomorphology as determined from the daytime thermal and visible images and then using the nighttime thermal data to interpret the nature of the surface layer within each unit. Seven units have been defined: (i) partially blanketed knobby plateaus, (ii) crater walls with terrain similar to that on the plateaus on the upper half and exposed, rocky surfaces on the lower half, (iii)-(v) three floor units with varying combinations of bedrock and indurated and/or particulate deposits, (vi) sand sheets, and (vii) a central mound, consisting of indurated and/or rocky material forming layers, terraces, and slides, covered by particulate material that tapers in thickness downslope. Additionally, dozens of channels have been observed on the crater walls and central mound. The results indicate that aeolian processes have played a major role in shaping much of the present surface layer within Gale and may still be active today. Because of the dramatic size and structure of Gale, the winds are most likely controlled by the local topography. Additionally, the presence and frequency of channels within Gale bolster hypotheses involving aqueous episodes in the history of the crater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号