首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
将未编目的空间碎片正确分类是空间态势感知的重要组成部分. 基于光变曲线, 通过仿真和实测实验, 探讨了空间碎片基本类型的机器学习分类方法. 在数据集中的仿真光变来自形状或材料不同的4类碎片, 实测光变从Mini-Mega TORTORA (MMT)数据库中提取, 实验以深度神经网络作为分类模型, 并和其他机器学习方法进行了比较. 结果显示深度卷积网络优于其他算法, 在仿真实验中对不同材料的圆柱体都能准确识别, 对其余两类卫星的识别率在90%左右; 实测实验中对火箭体和失效卫星的2分类准确率超过99%, 然而在进一步的型号/平台分类中, 准确率有所降低.  相似文献   

2.
We present a detrending algorithm for the removal of trends in time series. Trends in time series could be caused by various systematic and random noise sources such as cloud passages, changes of airmass, telescope vibration, CCD noise or defects of photometry. Those trends undermine the intrinsic signals of stars and should be removed. We determine the trends from subsets of stars that are highly correlated among themselves. These subsets are selected based on a hierarchical tree clustering algorithm. A bottom-up merging algorithm based on the departure from normal distribution in the correlation is developed to identify subsets, which we call clusters. After identification of clusters, we determine a trend per cluster by weighted sum of normalized light curves. We then use quadratic programming to detrend all individual light curves based on these determined trends. Experimental results with synthetic light curves containing artificial trends and events are presented. Results from other detrending methods are also compared. The developed algorithm can be applied to time series for trend removal in both narrow and wide field astronomy.  相似文献   

3.
在不同的轨道预报场景中, 使用的动力学模型也不同. 例如, 在低轨空间碎片的预报中大气阻力是十分重要的摄动力, 而到了中高轨, 大气阻力就可以忽略不计. 如何为不同轨道类型的空间碎片选择最优(满足精度要求下的最简)动力学模型还没有系统、详尽的研究. 将对不同精度需求、不同轨道类型下的大批量轨道进行预报, 通过比较不同动力学模型下的预报结果, 给出各种预报场景的最优动力学模型建议. 可以为不同轨道类型的空间碎片在轨道预报时选择基准动力学模型提供参考或标准.  相似文献   

4.
Hilbert-Huang Transform (HHT) is a novel data analysis technique for nonlinear and non-stationary data. We present a time-frequency analysis of both simulated light curves and an X-ray burst from the X-ray burster 4U 1702-429 with both the HHT and the Windowed Fast Fourier Transform (WFFT) methods. Our results show that the HHT method has failed in all cases for light curves with Poissonian fluctuations which are typical for all photon counting instruments used in astronomy, whereas the WFFT method can sensitively detect the periodic signals in the presence of Poissonian fluctuations; the only drawback of the WFFT method is that it cannot detect sharp frequency variations accurately.  相似文献   

5.
Finding outlier light curves in catalogues of periodic variable stars   总被引:2,自引:0,他引:2  
We present a methodology to discover outliers in catalogues of periodic light curves. We use a cross-correlation as the measure of 'similarity' between two individual light curves, and then classify light curves with lowest average 'similarity' as outliers. We performed the analysis on catalogues of periodic variable stars of known type from the MACHO and OGLE projects. This analysis was carried out in Fourier space and we established that our method correctly identifies light curves that do not belong to those catalogues as outliers. We show how an approximation to this method, carried out in real space, can scale to large data sets that will be available in the near future such as those anticipated from the Panoramic Survey Telescope & Rapid Response System (Pan-STARRS) and Large Synoptic Survey Telescope (LSST).  相似文献   

6.
星系的形态与星系的形成和演化息息相关, 其形态学分类是星系天文学后续研究的重要一环. 当前海量天文观测数据的出现使得天文数据自动分析方法越来越得到重视, 针对此问题, 利用先进的深度学习骨干网络EfficientNetV2, 分析不同的注意力机制类型和使用节点对网络性能的影响, 构建了一种命名为EfficientNetV2-S-Triplet7 (即在EfficientNetV2-S stage7的$1\times1$卷积层后加入Triplet模块)的改进算法模型来实现星系形态学的自动分类. 使用第二期星系动物园(Galaxy Zoo 2, GZ2)中超过24万张的测光图像作为初始数据进行实验测试. 在对数据进行预处理时采取了尺寸抖动、翻转、色彩畸变等图像增强手段来解决图像数量的不平衡问题. 在同一系列经典和前沿的深度学习算法模型AlexNet、ResNet-34、MobileNetV2、RegNet进行对比实验后, 得出EfficientNetV2-S-Triplet7算法在分类准确率、查全率和F1分数等指标上具有最好的测试结果. 在9375张测试图像中的3项指标值分别可达到89.03%、90.21%、89.93%, 查准率达到89.69%, 在其他模型中排在第3位. 该结果表明将EfficientNetV2-S-Triplet7算法应用于大规模星系数据的形态学分类任务中有很好的效果.  相似文献   

7.
Gamma-ray burst (GRB) afterglow observations in the Swift era have a perceived lack of achromatic jet breaks compared to the BeppoSAX or pre- Swift era. Specifically, relatively few breaks, consistent with jet breaks, are observed in the X-ray light curves of these bursts. If these breaks are truly missing, it has serious consequences on the interpretation of GRB jet collimation and energy requirements, and the use of GRBs as cosmological tools. Here, we address the issue of X-ray breaks that are possibly 'hidden' and hence the light curves are misinterpreted as being single power laws. We do so by synthesizing X-ray telescope (XRT) light curves and fitting both single and broken power laws, and comparing the relative goodness of each fit via Monte Carlo analysis. Even with the well-sampled light curves of the Swift era, these breaks may be left misidentified, hence caution is required when making definite statements on the absence of achromatic breaks.  相似文献   

8.
In this paper, we extend our numerical method for simulating terrestrial planet formation to include dynamical friction from the unresolved debris component. In the previous work, we implemented a rubble pile planetesimal collision model into direct N -body simulations of terrestrial planet formation. The new collision model treated both accretion and erosion of planetesimals but did not include dynamical friction from debris particles smaller than the resolution limit for the simulation. By extending our numerical model to include dynamical friction from the unresolved debris, we can simulate the dynamical effect of debris produced during collisions and can also investigate the effect of initial debris mass on terrestrial planet formation. We find that significant initial debris mass, 10 per cent or more of the total disc mass, changes the mode of planetesimal growth. Specifically, planetesimals in this situation do not go through a runaway growth phase. Instead, they grow concurrently, similar to oligarchic growth. The dynamical friction from the unresolved debris damps the eccentricities of the planetesimals, reducing the mean impact speeds and causing all collisions to result in merging with no mass loss. As a result, there is no debris production. The mass in debris slowly decreases with time. In addition to including the dynamical friction from the unresolved debris, we have implemented particle tracking as a proxy for monitoring compositional mixing. Although there is much less mixing due to collisions and gravitational scattering when dynamical friction of the background debris is included, there is significant inward migration of the largest protoplanets in the most extreme initial conditions (for which the initial mass in unresolved debris is at least equal to the mass in resolved planetesimals).  相似文献   

9.
We present high-cadence, high-precision multiband photometry of the young, M1Ve, debris disc star, AU Microscopii. The data were obtained in three continuum filters spanning a wavelength range from 4500 to 6600 Å, plus Hα, over 28 nights in 2005. The light curves show intrinsic stellar variability due to star-spots with an amplitude in the blue band of 0.051 mag and a period of 4.847 d. In addition, three large flares were detected in the data which all occur near the minimum brightness of the star. We remove the intrinsic stellar variability and combine the light curves of all the filters in order to search for transits by possible planetary companions orbiting in the plane of the nearly edge-on debris disc. The combined final light curve has a sampling of 0.35 min and a standard deviation of 6.8 mmag. We performed Monte Carlo simulations by adding fake transits to the observed light curve and find with 95 per cent significance that there are no Jupiter mass planets orbiting in the plane of the debris disc on circular orbits with periods,   P ≤ 5  d. In addition, there are no young Neptune like planets (with radii 2.5 times smaller than the young Jupiter) on circular orbits with periods,   P ≤ 3  d.  相似文献   

10.
机器学习在当今诸多领域已经取得了巨大的成功,但是机器学习的预测效果往往依赖于具体问题.集成学习通过综合多个基分类器来预测结果,因此,其适应各种场景的能力较强,分类准确率较高.基于斯隆数字巡天(Sloan Digital Sky Survey,SDSS)计划恒星/星系中最暗源星等集分类正确率低的问题,提出一种基于Stacking集成学习的恒星/星系分类算法.从SDSS-DR7(SDSS Data Release 7)中获取完整的测光数据集,并根据星等值划分为亮源星等集、暗源星等集和最暗源星等集.仅针对分类较为复杂且困难的最暗源星等集展开分类研究.首先,对最暗源星等集使用10折嵌套交叉验证,然后使用支持向量机(Support Vector Machine,SVM)、随机森林(Random Forest,RF)、XGBoost(eXtreme Gradient Boosting)等算法建立基分类器模型;使用梯度提升树(Gradient Boosting Decision Tree,GBDT)作为元分类器模型.最后,使用基于星系的分类正确率等指标,与功能树(Function Tree,FT)、SVM、RF、GBDT、XGBoost、堆叠降噪自编码(Stacked Denoising AutoEncoders,SDAE)、深度置信网络(Deep Belief Network,DBN)、深度感知决策树(Deep Perception Decision Tree,DPDT)等模型进行分类结果对比分析.实验结果表明,Stacking集成学习模型在最暗源星等集分类中要比FT算法的星系分类正确率提高了将近10%.同其他传统的机器学习算法、较强的提升算法、深度学习算法相比,Stacking集成学习模型也有较大的提升.  相似文献   

11.
Machine learning has achieved great success in many areas today, but the forecast effect of machine learning often depends on the specific problem. An ensemble learning forecasts results by combining multiple base classifiers. Therefore, its ability to adapt to various scenarios is strong, and the classification accuracy is high. In response to the low classification accuracy of the darkest source magnitude set of stars/galaxies in the Sloan Digital Sky Survey (SDSS), a star/galaxy classification algorithm based on the stacking ensemble learning is proposed in this paper. The complete photometric data set is obtained from the SDSS Data Release (DR) 7, and divided into the bright source magnitude set, dark source magnitude set, and darkest source magnitude set according to the stellar magnitude. Firstly, the 10-fold nested cross-validation method is used for the darkest source magnitude set, then the Support Vector Machine (SVM), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost) algorithms are used to establish the base-classifier model; the Gradient Boosting Decision Tree (GBDT) is used as the meta-classifier model. Finally, based on the classification accuracy of galaxies and other indicators, the classification results are analyzed and compared with the results obtained by the Function Tree (FT), SVM, RF, GBDT, Stacked Denoising Autoencoders (SDAE), Deep Belief Nets (DBN), and Deep Perception Decision Tree (DPDT) models. The experimental results show that the stacking ensemble learning model has improved the classification accuracy of galaxies in the darkest source magnitude set by nearly 10% compared to the function tree algorithm. Compared with other traditional machine learning algorithm, stronger lifting algorithm, and deep learning algorithm, the stacking ensemble learning model also has different degrees of improvement.  相似文献   

12.
The orbital and attitude dynamics of uncontrolled Earth orbiting objects are perturbed by a variety of sources. In research, emphasis has been put on operational space vehicles. Operational satellites typically have a relatively compact shape, and hence, a low area-to-mass ratio (AMR), and are in most cases actively or passively attitude stabilized. This enables one to treat the orbit and attitude propagation as decoupled problems, and in many cases the attitude dynamics can be neglected completely. The situation is different for space debris objects, which are in an uncontrolled attitude state. Furthermore, the assumption that a steady-state attitude motion can be averaged over data reduction intervals may no longer be valid. Additionally, a subset of the debris objects have significantly high area-to-mass ratio (HAMR) values, resulting in highly perturbed orbits, e.g. by solar radiation pressure, even if a stable AMR value is assumed. Note, this assumption implies a steady-state attitude such that the average cross-sectional area exposed to the sun is close to constant. Time-varying solar radiation pressure accelerations due to attitude variations will result in un-modeled errors in the state propagation. This work investigates the evolution of the coupled attitude and orbit motion of HAMR objects. Standardized pieces of multilayer insulation (MLI) are simulated in a near geosynchronous orbits. It is assumed that the objects are rigid bodies and are in uncontrolled attitude states. The integrated effects of the Earth gravitational field and solar radiation pressure on the attitude motion are investigated. The light curves that represent the observed brightness variations over time in a specific viewing direction are extracted. A sensor model is utilized to generate light curves with visibility constraints and magnitude uncertainties as observed by a standard ground based telescope. The photometric models will be needed when combining photometric and astrometric observations for estimation of orbit and attitude dynamics of non-resolved space objects.  相似文献   

13.
A three-dimensional Monte Carlo code for modelling radiation transport in Type Ia supernovae is described. In addition to tracking Monte Carlo quanta to follow the emission, scattering and deposition of radiative energy, a scheme involving volume-based Monte Carlo estimators is used to allow properties of the emergent radiation field to be extracted for specific viewing angles in a multidimensional structure. This eliminates the need to compute spectra or light curves by angular binning of emergent quanta. The code is applied to two test problems to illustrate consequences of multidimensional structure on the modelling of light curves. First, elliptical models are used to quantify how large-scale asphericity can introduce angular dependence to light curves. Secondly, a model which incorporates complex structural inhomogeneity, as predicted by modern explosion models, is used to investigate how such structure may affect light-curve properties.  相似文献   

14.
A novel artificial intelligence (AI) technique that uses machine learning (ML) methodologies combines several algorithms, which were developed by ThetaRay, Inc., is applied to NASA’s Transiting Exoplanets Survey Satellite (TESS) dataset to identify exoplanetary candidates. The AI/ML ThetaRay system is trained initially with Kepler exoplanetary data and validated with confirmed exoplanets before its application to TESS data. Existing and new features of the data, based on various observational parameters, are constructed and used in the AI/ML analysis by employing semi-supervised and unsupervised machine learning techniques. By the application of ThetaRay system to 10,803 light curves of threshold crossing events (TCEs) produced by the TESS mission, obtained from the Mikulski Archive for Space Telescopes, the algorithm yields about 50 targets for further analysis, and we uncover three new exoplanetary candidates by further manual vetting. This study demonstrates for the first time the successful application of the particular combined multiple AI/ML-based methodologies to a large astrophysical dataset for rapid automated classification of TCEs.  相似文献   

15.
An automated spectral classification technique for large sky surveys is pro-posed. We firstly perform spectral line matching to determine redshift candidates for an observed spectrum, and then estimate the spectral class by measuring the similarity be-tween the observed spectrum and the shifted templates for each redshift candidate. As a byproduct of this approach, the spectral redshift can also be obtained with high accuracy. Compared with some approaches based on computerized learning methods in the liter-ature, the proposed approach needs no training, which is time-consuming and sensitive to selection of the training set. Both simulated data and observed spectra are used to test the approach; the results show that the proposed method is efficient, and it can achieve a correct classification rate as high as 92.9%, 97.9% and 98.8% for stars, galaxies and quasars, respectively.  相似文献   

16.
If gravitational microlensing occurs in a binary source system, both source components are magnified, and the resulting light curve deviates from the standard one of a single source event. However, in most cases only one source component is highly magnified and the other component (the companion) can be treated as a simple blending source: this is a blending approximation. In this paper we show that, unlike the light curves, the astrometric curves, representing the trajectories of the source image centroid, of an important fraction of binary source events will not be sufficiently well-modelled by the blending effect alone. This is because the centroid shift induced by the source companion endures to considerable distances from the lens. Therefore, in determining the lens parameters from astrometric curves to be measured by future high-precision astrometric instruments, it will be important to take the full effect of the source companion into consideration.  相似文献   

17.
Machine learning has achieved great success in many areas today. The lifting algorithm has a strong ability to adapt to various scenarios with a high accuracy, and has played a great role in many fields. But in astronomy, the application of lifting algorithms is still rare. In response to the low classification accuracy of the dark star/galaxy source set in the Sloan Digital Sky Survey (SDSS), a new research result of machine learning, eXtreme Gradient Boosting (XGBoost), has been introduced. The complete photometric data set is obtained from the SDSS-DR7, and divided into a bright source set and a dark source set according to the star magnitude. Firstly, the ten-fold cross-validation method is used for the bright source set and the dark source set respectively, and the XGBoost algorithm is used to establish the star/galaxy classification model. Then, the grid search and other methods are used to adjust the XGBoost parameters. Finally, based on the galaxy classification accuracy and other indicators, the classification results are analyzed, by comparing with the models of function tree (FT), Adaptive boosting (Adaboost), Random Forest (RF), Gradient Boosting Decision Tree (GBDT), Stacked Denoising AutoEncoders (SDAE), and Deep Belief Nets (DBN). The experimental results show that, the XGBoost improves the classification accuracy of galaxies in the dark source classification by nearly 10% as compared to the function tree algorithm, and improves the classification accuracy of sources with the darkest magnitudes in the dark source set by nearly 5% as compared to the function tree algorithm. Compared with other traditional machine learning algorithms and deep neural networks, the XGBoost also has different degrees of improvement.  相似文献   

18.
单站测距资料定轨的困难限制了漫反射SLR(Satellite Laser Ranging)测距资料的应用.为此,提出利用两行根数模拟多站SLR测距资料作为辅助,实现单站SLR测距资料定轨的方法.该方法对卫星Ajisai单站SLR测距资料定轨并生成5 d预报轨道,误差小于40 m,实现利用单站测距资料的轨道改进,验证了方法的可行性.  相似文献   

19.
For LAMOST, the largest sky survey program in China, the solution of the problem of automatic discrimination of stars from galaxies by spectra has shown that the results of the PSF test can be significantly refined. However, the problem is made worse when the redshifts of galaxies are not available. We present a new automatic method of star/(normal) galaxy separation, which is based on Statistical Mixture Modeling with Radial Basis Function Neural Networks (SMM-RBFNN). This work is a continuation of our previous one, where active and non-active celestial objects were successfully segregated. By combining the method in this paper and the previous one, stars can now be effectively separated from galaxies and AGNs by their spectra-a major goal of LAMOST, and an indispensable step in any automatic spectrum classification system. In our work, the training set includes standard stellar spectra from Jacoby's spectrum library and simulated galaxy spectra of EO, SO, Sa, Sb types with redshift ranging from 0 to 1  相似文献   

20.
We simulated both the matter and light (galaxy) distributions in a wedge of the Universe and calculated the gravitational lensing magnification caused by the mass along the line-of-sight of galaxies and galaxy groups identified in sky surveys. A large volume redshift cone containing cold dark matter particles mimics the expected cosmological matter distribution in a flat universe with low matter density and a cosmological constant. We generate a mock galaxy catalogue from the matter distribution and identify thousands of galaxy groups in the luminous sky projection. We calculate the expected magnification around galaxies and galaxy groups and then the induced quasi-stellar object (QSO)–lens angular correlation due to magnification bias. This correlation is observable and can be used both to estimate the average mass of the lens population and to make cosmological inferences. We also use analytical calculations and various analyses to compare the observational results with theoretical expectations for the cross-correlation between faint QSOs from the 2dF Survey and nearby galaxies and groups from the Automated Plate Measurement and Sloan Digital Sky Survey Early Data Release. The observed QSO–lens anticorrelations are stronger than the predictions for the cosmological model used. This suggests that there could be unknown systematic errors in the observations and data reduction, or that the model used is not adequate. If the observed signal is assumed to be solely due to gravitational lensing, then the lensing is stronger than expected, due to more massive galactic structures or more efficient lensing than simulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号