首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The famous neutron star Geminga was until quite lately the only pulsar undetected in the radio regime, though observed as a strong pulsating γ- and X-ray source. Three independent groups from the Pushchino Radio Astronomy Observatory (Russia) reported recently the detection of pulsed radio emission from Geminga at 102.5 MHz, i.e., the first detection of the radio pulsar PSR J0633 + 1746 by Kuz'min &38; Losovskii, Malofeev &38; Malov and Shitov &38; Pugachev. This pulsar exhibits the weakest radio luminosity known. Its average pulse profile appears to be very wide, filling an entire 360° pulse window according to Kuz'min &38; Losovskii.   We present a model explaining the peculiarities of the Geminga radio pulsar, based on the assumption that it is an almost aligned rotator. The electromagnetic waves generated in the inner magnetosphere reach the region within the light cylinder with a weak magnetic field (at distances of a few light cylinder radii), where they are strongly damped due to the cyclotron resonance with particles of magnetospheric electron–positron plasma. The lowest frequencies that can escape are determined by the value of the magnetic field in the region where the line of sight passes through the light cylinder. The specific viewing geometry of an almost aligned rotator implies that the observer's line of sight probes the emission region near the bundle of the last open field lines. This explains the unusually weak emission from Geminga's low-frequency radio pulsar.  相似文献   

2.
New images of the supernova remnant (SNR) G351.7+0.8 are presented based on 21-cm H  i -line emission and continuum emission data from the Southern Galactic Plane Survey. SNR G351.7+0.8 has a flux density of 8.4 ± 0.7 Jy at 1420 MHz. Its spectral index is 0.52 ± 0.25 ( S = v −α) between 1420 and 843 MHz, typical of adiabatically expanding shell-like remnants. H  i observations show structures possibly associated with the SNR in the radial velocity range of −10 to −18 km s−1, and suggest a distance of 13.2 kpc and a radius of 30.7 pc. The estimated Sedov age for G351.7+0.8 is less than  6.8×104 yr  . A young radio pulsar PSR J1721−3532 lies close to SNR G351.7+0.8 on the sky. The new distance and age of G351.7+0.8 and recent proper motion measurements of the pulsar strongly argue against an association between SNR G351.7+0.8 and PSR J1721−3532. There is an unidentified, faint X-ray point source 1RXS J172055.3−353937 which is close to G351.7+0.8. This may be a neutron star potentially associated with G351.7+0.8.  相似文献   

3.
We report 327-MHz observations of three large (>15 arcmin) candidate supernova remnants (SNRs) at high Galactic latitudes using the Giant Metrewave Radio Telescope (GMRT). These objects were proposed by Duncan et al. as candidate SNRs in the Parkes 2.4-GHz survey. We detect extended 327-MHz emission in all three fields. G356.2+4.5 has a well-resolved shell of emission. This field also contains a 32-mJy pulsar situated at a distance of 1.4 kpc as derived from the dispersion measure of the pulsar. The field of G358.0+3.8 is highly confused and, although we confirm the presence of a partial ring, it has a lower signal-to-noise ratio detection. G004.8+6.2 (formerly G4.5+6.2) is located approximately 40 arcmin away from Kepler's SNR. Apart from GMRT observations of this field, this SNR lies in the field of view of a Very Large Array (VLA) D-array observation at 325 MHz and we detect a 17×18 arcmin SNR, possibly of shell morphology. All these fields show clear, well-resolved shells in the National Radio Astronomy Observatory/ VLA Sky Survey (NVSS) maps, which are also presented.  相似文献   

4.
The behaviour of pulsars at low radio-frequencies (below ≈ 50 MHz) remains poorly understood mainly due to very limited observational data on pulsars at these frequencies. We report here our measurements of pulse profiles at 34.5 MHz of 8 pulsars using the Gauribidanur Radio Telescope. None of the 8 pulsars show any significant interpulse emission at this frequency which conflicts with an earlier claim from 25 MHz observations. With the exception of one pulsar (PSR 0943 + 10) all the observed pulsars show turnovers at frequencies above 35 MHz in their spectra. We also report our attempts to study the short and long term variations in the pulsar signals at this low frequency.  相似文献   

5.
Using the Australia Telescope Compact Array (ATCA) we have imaged the fields around five promising pulsar candidates to search for radio pulsar wind nebulae (PWNe). We have used the ATCA in its pulsar-gating mode; this enables an image to be formed containing only off-pulse visibilities, thereby dramatically improving the sensitivity to any underlying PWN. Data from the Molonglo Observatory Synthesis Telescope were also used to provide sensitivity on larger spatial scales. This survey found a faint new PWN around PSR B0906−49; here we report on non-detections of PWNe towards PSRs B1046−58, B1055−52, B1610−50 and J1105−6107. Our radio observations of the field around PSR B1055−52 argue against previous claims of an extended X-ray and radio PWN associated with the pulsar. If these pulsars power unseen, compact radio PWNe, upper limits on the radio flux indicate that a fraction of less than 10−6 of their spin-down energy is used to power this emission. Alternatively, PSRs B1046−58 and B1610−50 may have relativistic winds similar to other young pulsars and the unseen PWN may be resolved and fainter than our surface brightness sensitivity threshold. We can then determine upper limits on the local interstellar medium (ISM) density of 2.2×10−3 and 1×10−2 cm−3, respectively. Furthermore, we derive the spatial velocities of these pulsars to be ∼450 km s−1 and thus rule out the association of PSR B1610−50 with supernova remnant (SNR) G332.4+00.1 (Kes 32). Strong limits on the ratio of unpulsed to pulsed emission are also determined for three pulsars.  相似文献   

6.
An experiment has been performed at 325 MHz, with a 10 m tracking dish, for the search of pulsed radio emission associated with X-ray pulsars. No evidence of radio pulses has been found in the four sources investigated, although the radio pulsar PSR 0329+54, used as a testing object, has been detected successfully.  相似文献   

7.
In the previous paper of this series, Deshpande & Rankin reported results regarding the sub-pulse drift phenomenon in pulsar B0943+10 at 430 and 111 MHz. This study has led to the identification of a stable system of sub-beams circulating around the magnetic axis of this star. Here, we present a single-pulse analysis of our observations of this pulsar at 35 MHz. The fluctuation properties seen at this low frequency, as well as our independent estimates of the number of sub-beams required and their circulation time, agree remarkably well with the reported behaviour at higher frequencies. We use the 'cartographic' transform mapping technique developed by Deshpande & Rankin in Paper I to study the emission pattern in the polar region of this pulsar. The significance of our results in the context of radio emission mechanisms is also discussed.  相似文献   

8.
We present X-ray data of the middle-aged radio pulsar PSR B0355+54. The XMM-Newton and Chandra observations show not only emission from the pulsar itself, but also compact diffuse emission extending ∼50″ in the opposite direction to the pulsar’s proper motion. Our analysis also indicates the presence of fainter diffuse emission extending ∼5′ from the point source. The morphology of the diffuse component is similar to the ram-pressure confined pulsar wind nebulae detected for other sources. We find that the compact diffuse component is well-fitted with a power-law, with an index that is consistent with the values found for other pulsar wind nebulae. The core emission from the pulsar can be characterized with a thermal plus power-law fit, with the thermal emission most likely originating in a hot polar cap.  相似文献   

9.
Seven giant radio pulses were recorded from the millisecond pulsar PSR B1937+21 during ≈8.1 min observation by the Ooty Radio Telescope (ORT) at 326.5 MHz. Although sparse, these observations support most of the giant pulse behaviour reported at higher radio frequencies (430 to 2380 MHz). Within the main component of the integrated profile, they are emitted only in a narrow (≲47 μs) window of pulse phase, close to its peak. This has important implications for doing super-high precision timing of PSR B1937+21 at low radio frequencies.  相似文献   

10.
In this paper, we describe pulsar observations at decametric wavelengths using the Gauribidanur Radio Telescope made subsequent to our earlier measurements (Deshpande & Radhakrishnan 1992). To improve the time-resolution in our measurements of pulse profiles, we have used the ‘swept-frequency dedispersion’ method with some modifications to suit its application at such low radio frequencies. We also present a new scheme that simplifies the calibration of the receiver gain characteristics. We present average profiles on four pulsars from these improved measurements at 34.5 MHz.  相似文献   

11.
We report a search for radio continuum emission from the gamma-ray pulsar Geminga. We have used the VLA to image the location of the optical counterpart of Geminga at 74 and 326 MHz. We detect no radio counterpart. We derive upper limits to the pulse-averaged flux density of Geminga, taking diffractive scintillation into account. We find that diffractive scintillation is probably quenched at 74 MHz and does not influence our upper limit, S<56 mJy (2 sigma), but that a 95% confidence level at 326 MHz is S<5 mJy. Owing to uncertainties on the other low-frequency detections and the possibility of intrinsic variability or extrinsic variability (refractive interstellar scintillation) or both, our nondetections are nominally consistent with these previous detections.  相似文献   

12.
Extrasolar planets are expected to emit detectable low-frequency radio emission. In this paper, we present results from new low-frequency observations of two extrasolar planetary systems (Epsilon Eridani and HD 128311) taken at 150 MHz with the Giant Metrewave Radio Telescope (GMRT). These two systems have been chosen because the stars are young (with ages <1 Gyr) and are likely to have strong stellar winds, which will increase the expected radio flux. The planets are massive (presumably) gas giant planets in longer period orbits, and hence will not be tidally locked to their host star (as is likely to be the case for short-period planets) and we would expect them to have a strong planetary dynamo and magnetic field. We do not detect either system, but are able to place tight upper limits on their low-frequency radio emission, at levels comparable to the theoretical predictions for these systems. From these observations, we have a 2.5σ limit of 7.8 mJy for ε Eri and 15.5 mJy for HD 128311. In addition, these upper limits also provide limits on the low-frequency radio emission from the stars themselves. These results are discussed and also the prospects for the future detection of radio emission from extrasolar planets.  相似文献   

13.
We present the results of our simultaneous observations of giant pulses from the Crab pulsar B0531+21 at frequencies of 594 and 2228 MHz with a high (62.5 ns) time resolution. The pulse broadening by scattering was found to be 25 and 0.4 µs at 594 and 2228 MHz, respectively. We obtained the original giant-pulse profiles compensated for interstellar scattering. The measured profile widths at the two frequencies are approximately equal, ≈0.5 µs; i.e., the giant pulses are narrower than the integrated profile by a factor of about 1000. We detected an extremely high brightness temperature of radio emission, Tb≥1036 K radio emission, which is higher than the previous estimates of this parameter by five orders of magnitude. The decorrelation bandwidth of the radio-spectrum diffraction distortions has been determined for this pulsar for the first time: 10 kHz at 594 MHz and 300 kHz at 2228 MHz.  相似文献   

14.
We present radio observations of the source G332.5−5.6, a candidate supernova remnant (SNR). Observations have been performed with the Australia Telescope Compact Array (ATCA) at two frequencies, 1.4 and 2.4 GHz. Our results confirm that G332.5−5.6 is an SNR, with a spectral index  α=−0.7 ± 0.2  for the whole source and an average fractional polarization of ∼35 per cent at 2.4 GHz. The central component is coincident with extended X-ray emission, and the distance to the SNR is estimated to be ∼3.4 kpc. Based on its radio and X-ray morphology, this SNR should be classified as a composite, and we suggest that it belongs to a trident-shaped subclass like G291.0−0.1.  相似文献   

15.
In this paper, we present the first low frequency (< 1.4 GHz) radio continuum study of a Wolf Rayet galaxy NGC 4214 using the Giant Meterwave Radio Telescope (GMRT). We detect diffuse extended emission from the galaxy disk at 325 MHz and find that the radio emission closely follows the ultraviolet emission mapped by GALEX. The galaxy is undergoing continuous star formation which can explain the diffuse emission. We suggest that the diffuse radio continuum emission and X-ray emission detected in the northern part of NGC 4214 is associated with a background galaxy, 2MASX J12153795+3622218.  相似文献   

16.
Most of the radio galaxies with z > 3 have been found using the red-shift spectral index correlation. We have started a programme with the Giant Metrewave Radio Telescope (GMRT) to exploit this correlation at flux density levels about 100 times deeper than the known high-redshift radio galaxies, with an aim to detect candidate high-redshift radio galaxies. Here we present results from the deep 150 MHz observations of LBDS-Lynx field, which has been imaged at 327, 610 and 1412 MHz with the Westerbork Synthesis Radio Telescope (WSRT) and at 1400 and 4860 MHz with the Very Large Array (VLA). We find about 150 radio sources with spectra steeper than 1. About two-thirds of these are not detected in Sloan Digital Sky Survey (SDSS), hence are strong candidate high-redshift radio galaxies, which need to be further explored with deep infra-red imaging and spectroscopy to estimate the red-shift.  相似文献   

17.
Interplanetary scintillation observations of eleven supernova remnants and the pulsar J1939+2134, around which the existence of a supernova remnant remains obscure, were carried out with the largest in the world decameter radio telescope UTR-2 at 20, 25 and 30 MHz to determine if any of them contain compact radio sources with the angular size θ<5″. The sample included the young Galactic remnants and the other powerful SNRs. The interplanetary scintillations of the compact radio source in the Crab Nebula associated with the well-known pulsar J0534+2200 and the pulsar J1939+2134 were observed. Apart from the Crab Nebula, we have not detected a compact radio source in supernova remnants with the angular size θ<5″ and the flux density more than 10 Jy. The observations do not confirm the existence of the low frequency compact source in Cassiopeia A that has remained controversial.  相似文献   

18.
We have made observations of the as sociated HI absorption of a high redshift radio galaxy 0902+34 atz = 3.395 with the Giant Meterwave Radio Telescope in the 323 ± 1 MHz band. We find a narrow absorption line with a flux density of 11.5 mJy at a redshift of 3.397 consistent with that observed by Usonet al. (1991), Briggset al. (1993) and de Bruyn (1996). A weak broad absorption feature reported by de Bruyn (1996) has not been detected in our observations. We also place an upper limit of 4mJy(2σ) on emission line strength at the position where Usonet al. (1991) claimed to have found a narrow emission line.  相似文献   

19.
We have observed a total of 67 pulsars at five frequencies ranging from 243 to 3100 MHz. Observations at the lower frequencies were made at the Giant Metre-Wave Telescope in India and those at higher frequencies at the Parkes Telescope in Australia. We present profiles from 34 of the sample with the best signal-to-noise ratio and the least scattering. The general 'rules' of pulsar profiles are seen in the data; profiles get narrower, the polarization fraction declines and outer components become more prominent as the frequency increases. Many counterexamples to these rules are also observed, and pulsars with complex profiles are especially prone to rule breaking. We hypothesize that the location of pulsar emission within the magnetosphere evolves with time as the pulsar spins down. In highly energetic pulsars, the emission comes from a confined range of high altitudes, in the middle range of spin down energies the emission occurs over a wide range of altitudes whereas in pulsars with low spin-down energies it is confined to low down in the magnetosphere.  相似文献   

20.
We present a new multiwavelength study of supernova remnant (SNR) B0513−692 in the Large Magellanic Cloud (LMC). The remnant also has a strong, superposed, essentially unresolved, but unrelated radio source at its north-western edge, J051324−691049. This is identified as a likely compact H  ii region based on related optical imaging and spectroscopy. We use the Australia Telescope Compact Array (ATCA) at 4790 and 8640 MHz  (λ≃ 6 cm and λ≃ 3.5 cm)  to determine the large-scale morphology, spectral index and polarization characteristics of B0513−692 for the first time. We detect a strongly polarized region (49 per cent) in the remnant's southern edge  (λ≃ 6 cm)  . Interestingly, we also detect a small (∼40 arcsec) moderately bright, but distinct optical, circular shell in our Hα imagery which is adjacent to the compact H  ii region and just within the borders of the north-eastern edge of B0513−692. We suggest that this is a separate new SNR candidate based on its apparently distinct character in terms of optical morphology in three imaged emission lines and indicative SNR optical spectroscopy (including enhanced optical [S  ii ] emission relative to Hα).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号