首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  国内免费   1篇
大气科学   9篇
自然地理   3篇
  2014年   1篇
  2013年   3篇
  2011年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
RegCM3模式对青藏高原温度和降水的模拟及检验   总被引:5,自引:2,他引:3  
为了检验RegCM3区域气候模式对青藏高原地区的模拟能力,利用NCEP再分析资料和观测站点资料,采用三种不同的对流参数化方案,对青藏高原地区2006年夏季进行了模拟分析,并重点对温度和降水进行了细致的检验。结果表明:模式能较好地再现青藏高原地区大尺度的环流特征,具有对青藏高原地区的温度和降水分布特征的模拟能力;对于量值的模拟,三种对流参数化方案均模拟出了与实况温度一致的变化趋势,但均存在5~6 ℃的冷偏差;Grell方案模拟的降水量均大于实况,Kuo-Anthes方案对于高原地区的降水量的模拟较为接近于实况,但模式对降水量的模拟能力仍有待进一步提高。  相似文献   
2.
近50年青藏高原东部降雪的时空演变   总被引:1,自引:0,他引:1  
胡豪然  梁玲 《地理学报》2014,69(7):1002-1012
选用1967-2012年青藏高原东部60个站点的观测资料,分析了该地区降雪的时空演变特征,并结合降水和气温的变化,探讨了降雪与积雪的关系,结果表明:青藏高原东部年降雪量在1.3~152.5 mm范围内变化,空间分布差异显著;秋季降雪表现出中间多、周边少的特征,冬季降雪表现出由东南向西北递减的特征,春季降雪最多且空间分布与年降雪基本一致;降雪可划分为青南高原区、藏北高原区、柴达木盆地区、青藏高原东南缘区、川西高原西北部区、青藏高原南缘区、青海东北部区及藏南谷地区;就青藏高原整体而言,除秋季外,整年、冬季和春季降雪均表现出“少—多—少”的年代际变化特征,其中冬季降雪在1986年发生了由少到多的突变,整年、冬季和春季降雪均在1997年发生了由多到少的突变;不同区域降雪的时间变化规律各具特点;降雪与积雪的关系十分密切,春季降雪受气温的影响最为显著,秋季次之,冬季最弱;20世纪末,春季降雪受气温升高的影响表现出与降水变化相反的由多到少的气候突变特征。  相似文献   
3.
近50年青藏高原东部冬季积雪的时空变化特征   总被引:2,自引:0,他引:2  
胡豪然  梁玲 《地理学报》2013,68(11):1493-1503
选取青藏高原东部地区1961-2010 年64 个测站的积雪数据,分析了冬季积雪日数的空间分布和年代际变化特征,结果表明:高原东部冬季积雪空间分布差异较大,巴颜喀拉山、唐古拉山和念青唐古拉山多雪且变率大,藏南谷地、川西干暖河谷地带及柴达木盆地少雪且变率小,这样的空间分布是由周边大气环流系统及复杂局地地形共同造成的;高原东部冬季积雪表现出“少—多—少”的年代际变化特征,分别在80 年代末和20 世纪末发生由少到多和由多到少的两次突变,尤其是20 世纪末的突变更为显著;降雪和气温的变化是影响积雪日数的重要因素,其中降雪的影响更为显著;80 年代末高原冬季降雪由少到多的突变是造成积雪日数发生相应变化的主要原因;20 世纪末高原冬季气温和降雪分别发生由低到高和由多到少突变,其影响叠加导致积雪日数发生了更为显著的突变。  相似文献   
4.
黄土高原植被变化对环境影响的数值模拟   总被引:14,自引:10,他引:4  
梁玲  吕世华  柳媛普 《高原气象》2006,25(4):575-582
使用美国NCAR新版MM5非静力平衡模式,模拟了黄土高原2003年6月26~30日的一次降水过程。该试验是通过改变黄土高原局部地区植被覆盖情况,对比分析植被改变区域内各气象要素的变化情况。结果表明:植被改善能使雨量增加,径流量减小,湿度增大,温度日较差减小,使气候变的温和。植被退化却使雨量减少,径流加大,易使水土流失,对水土保持不利。试验较全面地揭示了非均匀地表大气边界层内的温、湿场与陆面相互作用的机理。  相似文献   
5.
近50年青藏高原东部降水的时空变化特征   总被引:1,自引:0,他引:1  
胡豪然  梁玲 《四川气象》2013,(4):1-7,15
选用1967~2012年青藏高原东部60个站点的降水资料,分析了该地区降水的时空演变特征,结果表明:高原东部降水呈由东南向西北递减的态势,高值区位于西藏东部和川西高原,低值区位于柴达木盆地;降水场可以划分为八个小区,分别是西藏东部和川西高原西部区、藏南谷地区、青南高原区、柴达木盆地区、藏北高原区、川西高原北部区、青藏高原东南缘区以及青海东北部区.年降水表现出强增加趋势,20世纪60年代后期到90年代后期相对偏少,20世纪末以来相对偏多;除川西高原北部区外,其余各区不同程度的表现出增加趋势.春季降水表现出“偏少~偏多”的年代际变化特征,在1995年附近发生由少到多的突变,20世纪60年代后期到90年代中期相对偏少,90年代后期以来相对偏多;八个分区均不同程度的表现出增加趋势.夏季降水呈增加趋势,20世纪60年代后期到90年代后期相对偏少,20世纪末以来相对偏多;八个分区均不同程度的表现出增加趋势.秋季降水的线性趋势趋近于零且没有表现出年代际变化特征;除川西高原北部区呈减少趋势外,各区均不同程度的表现出增加趋势.冬季降水表现出“偏少~偏多~偏少”的年代际变化特征,分别在1986和1996年附近发生由少到多和由多到少的突变,20世纪60年代后期到80年代中期相对偏少,80年代后期到90年代中期相对偏多,90年代后期以来相对偏少;除西藏东部和川西高原西部区及青海东北部区外,各区均不同程度的表现出“偏少~偏多~偏少”的年代际变化特征.  相似文献   
6.
金塔绿洲小气候效应的数值模拟   总被引:6,自引:5,他引:1  
使用美国NCAR新版MM5V3.6非静力平衡模式,采用三重嵌套的降尺度方法,模拟研究了夏季金塔绿洲小气候效应特征。绿洲的存在改变了沙漠地区原有的环流结构和湿度分布;绿洲边界层低,沙漠边界层较高,绿洲较低的边界层结构实际上是一个保护层,使得绿洲大气中水分保存在较低边界层中,对绿洲生态系统的发展起到了保护作用;绿洲地区感热通量小,潜热通量大;沙漠地区感热通量大,潜热通量小。通过能量和水分的非均匀分布驱动了绿洲环流,使沙漠区域产生上升气流,绿洲区域产生下沉气流。  相似文献   
7.
利用区域气候模式RegCM3,模拟分析了青藏高原地区植被退化对自身及周边地区气候产生的影响。结果表明:植被退化后,在退化区域冬夏季地表温度明显升高,最大增值2℃,而外围则温度降低,量值为-0.5℃~-1℃。夏季气温的变化趋势与地表温度类似,但量值较小,冬季退化区气温增加范围较大。夏季退化区湿度和降水增大,增加值分别达到0.6g/kg和35mm/month;退化区外围降水减少,外围西部及北部地区湿度减小,中心值为-0.4 g/kg。在冬季,湿度稍有减小,主要分布在西藏地区和青海、四川的交界处。  相似文献   
8.
近50年川渝地区夏季极端高温事件的时空演变特征   总被引:2,自引:0,他引:2  
利用川渝地区1961~2006年145个台站夏季的平均温度资料,分析了该地区夏季极端高温事件的时空演变特征,结果表明:川渝地区极端高温事件高发区位于103°E以东,由西向东呈带状横贯四川盆地中部直至重庆地区北部,发生频次最低的是川西南山地区;根据川渝地区夏季极端高温事件发生频次的异常空间分布特征,可以分成4个区域,分别是四川盆地西北部区、盆地东南部区、川西高原西南部区以及川西南山地区;从长期变化趋势来看,夏季极端高温事件发生频次分别在四川盆地西北部呈显著增长趋势,盆地东南部呈显著减少趋势,川西高原西南部和川西南山地区呈弱增长趋势;近50年中,四川盆地西北部夏季极端高温事件年代际变化特征非常明显,两次主要转变发生在1972年和1993年前后,盆地东南部年代际变化特征明显,主要转变发生在1972年前后。  相似文献   
9.
黄土高原植被改变对夏季当地气候影响的数值模拟   总被引:2,自引:1,他引:1  
梁玲  吕世华  尚伦宇 《高原气象》2008,27(2):293-300
利用2003年6、7月份的资料及中尺度模式MM5V3.5,对当年夏季黄土高原地区的温度场和湿度场进行了模拟分析,结果表明:黄土高原地区植被覆盖改善,将使得当地夏季平均气温、地面温度降低,气温减小的最大值出现在植被改变的中心区域,最大值为0.6℃,其周边地区温度也是普遍降低的,而地面温度变化大于气温。这种变化主要发生在白天,夜间气温和地温的变化相对较小,夜间,平均地温甚至略有升高。在植被改善的地区,夏季平均气温和平均地温日较差均减小。植被覆盖改善后,空气湿度在白天和夜间均明显增加,白天增加量大于夜间,而影响范围则小于夜间。  相似文献   
10.
近50年四川盆地汛期极端降水事件的时空演变   总被引:17,自引:4,他引:13  
利用四川盆地1961-2006年145个台站汛期的逐日降水资料,分析了该地区汛期极端降水事件的时空演变特征,结果表明:该地区汛期极端降水事件的发生频次分布与降水量分布差异较大,由西向东呈阶梯状递减趋势;川西高原与四川盆地之间以及盆地东西部之间的反位相变化是川渝地区汛期极端降水事件发生频次最主要的两个空间异常模态:该地区汛期极端降水事件发生频次的空间分布可以分为8个区;分别是四川盆地中部区、东部区、南部区、西部区、川西高原西部区、中部区、川西南山地区和重庆东部区;从长期变化趋势来看,汛期极端降水事件发生频次除在四川盆地西部区和重庆东部区分别呈较弱的减少和增长趋势以外,在其余各区的线性趋势都较为明显,其中四川盆地东部区、川西南山地区、川西高原西部和中部区表现为增长,四川盆地中部和南部区表现为减少;从气候因子分析看,汛期西太平洋副高位置的南北变化、东亚以及南亚季风的强弱变化分别对四川盆地东部区、中部区以及西部区的极端降水事件存在显著影响.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号