首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   4篇
大气科学   2篇
地球物理   47篇
地质学   50篇
海洋学   25篇
自然地理   3篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2018年   2篇
  2017年   3篇
  2016年   5篇
  2015年   2篇
  2014年   3篇
  2013年   7篇
  2012年   6篇
  2011年   11篇
  2010年   9篇
  2009年   15篇
  2008年   9篇
  2007年   5篇
  2006年   9篇
  2005年   7篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1994年   1篇
  1992年   2篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
排序方式: 共有127条查询结果,搜索用时 31 毫秒
1.
2.
There is a growing concern with the impact of marine operations on the environment. This requires reducing fuel consumption and vessel pollution during operation. On-board computers and satellite communications will enable the operator to reduce fuel consumption and NOX emissions during vessel operations.This paper presents the results of a study on this problem and how such an on-board system could be implemented to reduce fuel consumption and engine NOX emissions.  相似文献   
3.
Ship hull drag reduction using bottom air injection   总被引:1,自引:0,他引:1  
The idea of bottom air injection to reduce ship hull resistance is not new. Early patents envisioned planing hull applications. Recent planing hull tests speed realized an increase of 7–12 knots. River barges and ship fitted with an air injection system results are presented to show a 10–15% reduction in the frictional resistance. Graphs for making initial estimates for displacement hulls with bottom air injection are presented. It is clear from these results that improvements in high speed planing catamarans and full form hull resistance can be realized by using bottom air injection.  相似文献   
4.
This study represents the first paleoseismic approach in Spain in which archaeological remains are considered. The ancient Roman city of Baelo Claudia (1st–4th centuries AD), located at the axial zone of the Gibraltar Strait (Cadiz, south Spain), contains abundant disrupted architectural relics and ground collapses (i.e. landsliding, liquefacion) probably related to historic earthquake damage of intensity IX–X MSK. The archaeological stratigraphy of the city evidence two major episodes of abrupt city destruction bracketed in AD 40–60 and AD 350–395 separated by an intervening horizon of demolition for city rebuilding, otherwise characteristic for many earthquake-damaged archaeological sites in the Mediterranean. The second episode led the eventual city abandonment, and it is evidenced by good examples of column collapse, distortion, failure and breakdown of house and city walls, and pavement warping and disruptions documented during different archaeological excavations, which can be catalogued as secondary coseismic effects. Main damaged relicts observable today are the set of pop-up like arrays and warping developed in the ancient Roman pavement. Their analysis indicate an anomalous westwards ground displacement oblique to the main gentle southward slope of the topography, as also evidence failures, collapses and breakdown of walls and columns, suggesting that stress acted in a broad SW–NE/WSW–ENE orientation consistent whit the expectable motion along the largest NE–SW strike-slip faults of the zone, which in turn can be catalogued as seismic sources of moderate events (ca. 5 mb). Major disruptions and city abandonment were hesitantly related to relatively far strong earthquakes occurred during the late 4th century AD in the Mediterranean or western coast of Iberia by Menanteau et al. [Menanteau, L., Vanney, J.R., Zazo, C., 1983. Belo II : Belo et son environment (Detroit de Gibraltar), Etude physique d'un site antique. Pub. Casa de Velazquez, Serie Archeologie 4., Ed. Broccard, París.]. However, this study indicates that the occurrence of close moderate earthquakes jointly with the unstable character of the ground at the zone (site effect) is a more reliable hypothesis to explain the observed deformations.  相似文献   
5.
Deformation mechanisms at the pore scale are responsible for producing large strains in porous rocks. They include cataclastic flow, dislocation creep, dynamic recrystallization, diffusive mass transfer, and grain boundary sliding, among others. In this paper, we focus on two dominant pore‐scale mechanisms resulting from purely mechanical, isothermal loading: crystal plasticity and crofracturing. We examine the contributions of each mechanism to the overall behavior at a scale larger than the grains but smaller than the specimen, which is commonly referred to as the mesoscale. Crystal plasticity is assumed to occur as dislocations along the many crystallographic slip planes, whereas microfracturing entails slip and frictional sliding on microcracks. It is observed that under combined shear and tensile loading, microfracturing generates a softer response compared with crystal plasticity alone, which is attributed to slip weakening where the shear stress drops to a residual level determined by the frictional strength. For compressive loading, however, microfracturing produces a stiffer response than crystal plasticity because of the presence of frictional resistance on the slip surface. Behaviors under tensile, compressive, and shear loading invariably show that porosity plays a critical role in the initiation of the deformation mechanisms. Both crystal plasticity and microfracturing are observed to initiate at the peripheries of the pores, consistent with results of experimental studies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
6.
We present an explicit extended finite element framework for fault rupture dynamics accommodating bulk plasticity near the fault. The technique is more robust than the standard split‐node method because it can accommodate a fault propagating freely through the interior of finite elements. To fully exploit the explicit algorithmic framework, we perform mass lumping on the enriched finite elements that preserve the kinetic energy of the rigid body and enrichment modes. We show that with this technique, the extended FE solution reproduces the standard split‐node solution, but with the added advantage that it can also accommodate randomly propagating faults. We use different elastoplastic constitutive models appropriate for geomaterials, including the Mohr–Coulomb, Drucker–Prager, modified Cam‐Clay, and a conical plasticity model with a compression cap, to capture off‐fault bulk plasticity. More specifically, the cap model adds robustness to the framework because it can accommodate various modes of deformation, including compaction, dilatation, and shearing. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
7.
8.
The airborne laser scanning LIDAR (LIght Detection And Ranging) provides high-resolution Digital Terrain Models (DTM) that have been applied recently to the characterization, quantification and monitoring of coastal environments. This study assesses the contribution of LIDAR altimetry and intensity data, topographically-derived features (slope and aspect), and multi-spectral imagery (three visible and a near-infrared band), to map coastal habitats in the Bidasoa estuary and its adjacent coastal area (Basque Country, northern Spain). The performance of high-resolution data sources was individually and jointly tested, with the maximum likelihood algorithm classifier in a rocky shore and a wetland zone; thus, including some of the most extended Cantabrian Sea littoral habitats, within the Bay of Biscay. The results show that reliability of coastal habitat classification was more enhanced with LIDAR-based DTM, compared with the other data sources: slope, aspect, intensity or near-infrared band. The addition of the DTM, to the three visible bands, produced gains of between 10% and 27% in the agreement measures, between the mapped and validation data (i.e. mean producer's and user's accuracy) for the two test sites. Raw LIDAR intensity images are only of limited value here, since they appeared heterogeneous and speckled. However, the enhanced Lee smoothing filter, applied to the LIDAR intensity, improved the overall accuracy measurements of the habitat classification, especially in the wetland zone; here, there were gains up to 7.9% in mean producer's and 11.6% in mean user's accuracy. This suggests that LIDAR can be useful for habitat mapping, when few data sources are available. The synergy between the LIDAR data, with multi-spectral bands, produced high accurate classifications (mean producer's accuracy: 92% for the 16 rocky habitats and 88% for the 11 wetland habitats). Fusion of the data enabled discrimination of intertidal communities, such as Corallina elongata, barnacles (Chthamalus spp.), and stands of Spartina alterniflora and Phragmites australis, which presented misclassification when conventional visible bands were used alone. All of these results were corroborated by the kappa coefficient of agreement. The high classification accuracy found here, selecting data sources, highlights the value of integrating LIDAR data with multi-spectral imagery for habitat mapping in the intertidal complex fringe.  相似文献   
9.
Validation of the AZTI's Fish Index (AFI), proposed for the Basque Country (northern Spain), in assessing fish quality within the Water Framework Directive (WFD), is undertaken. The response to anthropogenic pressure is investigated, in setting the boundaries between the different quality status classes. Hence, 12 estuaries were sampled, at different frequencies, between 1989 and 2007, by means of a beam trawl. Significant (p < 0.0001) correlations were found between the AFI and oxygen saturation and ammonia. Oxygen quality standards are used to set boundaries between quality classes. Then, the AFIs obtained are compared with different anthropogenic pressures, including urban and industrial discharges, engineering works and dredging. The effects of the removal of some of these pressures are also studied. The total number of pressures within an estuary shows significant (p < 0.009) negative correlation with AFI, explaining between 51 and 62% of the variability in fish quality. The impact of pressures upon fish and demersal assemblages is detected as required by the WFD. Nonetheless, further investigation and intercalibration of the methods used, are necessary.  相似文献   
10.
The bathymetric LiDAR system is an airborne laser that detects sea bottom at high vertical and horizontal resolutions in shallow coastal waters. This study assesses the capabilities of the airborne bathymetric LiDAR sensor (Hawk Eye system) for coastal habitat mapping in the Oka estuary (within the Biosphere Reserve of Urdaibai, SE Bay of Biscay, northern Spain), where water conditions are moderately turbid. Three specific objectives were addressed: 1) to assess the data quality of the Hawk Eye LiDAR, both for terrestrial and subtidal zones, in terms of height measurement density, coverage, and vertical accuracy; 2) to compare bathymetric LiDAR with a ship-borne multibeam echosounder (MBES) for different bottom types and depth ranges; and 3) to test the discrimination potential of LiDAR height and reflectance information, together with multi-spectral imagery (three visible and near infrared bands), for the classification of 22 salt marsh and rocky shore habitats, covering supralittoral, intertidal and subtidal zones. The bathymetric LiDAR Hawk Eye data enabled the generation of a digital elevation model (DEM) of the Oka estuary, at 2 m of horizontal spatial resolution in the terrestrial zone (with a vertical accuracy of 0.15 m) and at 4 m within the subtidal, extending a water depth of 21 m. Data gaps occurred in 14.4% of the area surveyed with the LiDAR (13.69 km2). Comparison of the LiDAR system and the MBES showed no significant mean difference in depth. However, the Root Mean Square error of the former was high (0.84 m), especially concentrated upon rocky (0.55–1.77 m) rather than in sediment bottoms (0.38–0.62 m). The potential of LiDAR topographic variables and reflectance alone for discriminating 15 intertidal and submerged habitats was low (with overall classification accuracy between 52.4 and 65.4%). In particular, reflectance retrieved for this case study has been found to be not particularly useful for classification purposes. The combination of the LiDAR-based DEM and derived topographical features with the near infrared and visible bands has permitted the mapping of 22 supralittoral, intertidal and subtidal habitats of the Oka estuary, with high overall classification accuracies of between 84.5% and 92.1%, using the maximum likelihood algorithm. The airborne bathymetric Hawk Eye LiDAR, although somewhat limited by water turbidity and wave breaking, provides unique height information obscured from topographic LiDAR and acoustic systems, together with an improvement of the habitat mapping reliability in the complex and dynamic coastal fringe.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号