首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   1篇
  国内免费   3篇
测绘学   1篇
大气科学   12篇
地球物理   6篇
地质学   8篇
海洋学   19篇
天文学   3篇
综合类   2篇
自然地理   1篇
  2022年   1篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   2篇
  2014年   7篇
  2013年   5篇
  2012年   5篇
  2011年   3篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
  1998年   1篇
排序方式: 共有52条查询结果,搜索用时 31 毫秒
1.
Chemical composition, Raman microspectrometry, and Fourier transform infrared (FT-1R) and SEM-CL (Cathodluminescence) analyses are carried out for Tanzania and Madagascar garnets for locality identification. Inclusion study was sustained after electron probe microanalysis (EPMA). Needle-like illmenites, apatites and zircons were the most common solid inclusions in Tanzania garnets. Madagascar garnets revealed rutile needles and apatites were also observed, but differences in size, shape and distribution patterns were noticed compared to Tanzania garnets. Tanzania garnets exhibited all types of observable fluid inclusions such as ““ fingerprint““ pattern, called Type Ⅰ-A, liquid-only (L) single phase fluid inclusion, called Type Ⅰ-B and Type Ⅱ-A ( L S), Type Ⅱ-B ( L V) and Type Ⅲ-A (L Sylvite even if all examined garnets from three localities retained ““fingerprint““ features, so called, partially healed fractures, in common. Chemical composition, Raman microspectrometry and Fourier transform infrared (FT-IR) analysis taken turned out to be useful methods for the purpose of this study. Using consequences of SEM-CL and inclusion study, accordingly, the locality identification of gem-quality garnets is capable of being available in further application for other kinds of gemstones.  相似文献   
2.
3.
4.
A two-step stiffness design procedure is developed for a moment-resisting planar frame supported by a prescribed two-dimensional finite-element ground-pile system. In the first step, a hybrid inverse eigenmode problem is formulated and its solution is derived in an analytical form. A difficulty resulting from the existence of multiple interface nodes is overcome by incorporating a deformation constraint into a set of linear equations for finding the lowest-mode displacements at the interface nodes and in the ground. In the second step, the fundamental natural frequency of the combined system and the lowest mode-strain ratios in the frame specified in the first step are regarded as the parameters for adjusting the mean peak seismic member-end strains to their specified values. If the fundamental natural frequency of the frame with a fixed-base happens to be close to that of the ground, a difficulty arises in the two-step stiffness design procedure because of an irregular response amplification and of the non-predominance of the lowest-mode components. A new practical design procedure of rapid convergence is proposed such that an initial design is found for a stiff ground and that a sequence of stiffness designs is generated with respect to a ground stiffness parameter without any differential coefficient of series expansion. The accuracy of the model utilized in this paper and the validity of the present stiffness design procedure are verified through time-history response analysis.  相似文献   
5.
We present climate responses of Representative Concentration Pathways (RCPs) using the coupled climate model HadGEM2-AO for the Coupled Model Intercomparison Project phase 5 (CMIP5). The RCPs are selected as standard scenarios for the IPCC Fifth Assessment Report and these scenarios include time paths for emissions and concentrations of greenhouse gas and aerosols and land-use/land cover. The global average warming and precipitation increases for the last 20 years of the 21st century relative to the period 1986-2005 are +1.1°C/+2.1% for RCP2.6, +2.4°C/+4.0% for RCP4.5, +2.5°C/+3.3% for RCP6.0 and +4.1°C/+4.6% for RCP8.5, respectively. The climate response on RCP 2.6 scenario meets the UN Copenhagen Accord to limit global warming within two degrees at the end of 21st century, the mitigation effect is about 3°C between RCP2.6 and RCP8.5. The projected precipitation changes over the 21st century are expected to increase in tropical regions and at high latitudes, and decrease in subtropical regions associated with projected poleward expansions of the Hadley cell. Total soil moisture change is projected to decrease in northern hemisphere high latitudes and increase in central Africa and Asia whereas near-surface soil moisture tends to decrease in most areas according to the warming and evaporation increase. The trend and magnitude of future climate extremes are also projected to increase in proportion to radiative forcing of RCPs. For RCP 8.5, at the end of the summer season the Arctic is projected to be free of sea ice.  相似文献   
6.
Hydrographic data, including particulate organic carbon (POC) from the Northeastern Gulf of Mexico (NEGOM) study, were combined with remotely-sensed SeaWiFS data to estimate POC concentration using principal component analysis (PCA). The spectral radiance was extracted at each NEGOM station, digitized, and averaged. The mean value and spurious trends were removed from each spectrum. De-trended data included six wavelengths at 58 stations. The correlation between the weighting factors of the first six eigenvectors and POC concentration were applied using multiple linear regression. PCA algorithms based on the first three, four, and five modes accounted for 90, 95, and 98% of total variance and yielded significant correlations with POC with R 2 = 0.89, 0.92, and 0.93. These full waveband approaches provided robust estimates of POC in various water types. Three different analyses (root mean square error, mean ratio and standard deviation) showed similar error estimates, and suggest that spectral variations in the modes defined by just the first four characteristic vectors are closely correlated with POC concentration, resulting in only negligible loss of spectral information from additional modes. The use of POC algorithms greatly increases the spatial and temporal resolution for interpreting POC cycling and can be extrapolated throughout and perhaps beyond the area of shipboard sampling.  相似文献   
7.
An hourly-cycling ensemble Kalman filter (EnKF) working at 2.5?km horizontal grid spacing is implemented over southern Ontario (Canada) to assimilate Meteorological Terminal Aviation Routine Weather Reports (METARs) in addition to the observations assimilated operationally at the Canadian Meteorological Centre. This high-resolution EnKF (HREnKF) system employs ensemble land analyses and perturbed roughness length to prevent an ensemble spread that is too small near the surface. The HREnKF then performs continuously for a four-day period, from which twelve-hour ensemble forecasts are launched every six hours. The impact on analyses and short-term forecasts of assimilating METAR data is given special attention.

It is shown that using ensemble land surface analyses increases near-surface ensemble spreads for temperature and specific humidity. Perturbing roughness length enlarges the spread for surface wind. Given sufficient ensemble spread, the four-day case study shows that the near-surface model state is brought closer to surface observations during the cycling process. The impact of assimilating surface data can also be seen at higher levels by using aircraft reports for verification. The ensemble forecast verification suggests that METAR data assimilation improves ensemble forecasts of air temperature and dewpoint near the surface up to a lead time of six hours or even longer. However, only minor improvement is found in surface wind forecasts.  相似文献   
8.
We developed a least-cost path analysis algorithm that satisfies a slope threshold condition in hilly terrain. The new algorithm uses an expanding moving-window to explore a combination of cells that satisfy an elevation threshold condition and then supplements this by executing cut and fill operations when there are obstacle cells between source and destination cells. Cut and fill factors regarding the difference in the actual elevation and revised elevation are considered and a least-cost path is analyzed after calculating the accumulated travel cost to the destination point. After applying the developed algorithm to synthetic and real-world data, the least accumulated travel cost from the source point can then be calculated for all cells on the raster surface by considering various slope thresholds, moving-window sizes and raster data resolutions. This algorithm can be implemented as a useful tool in GIS software as well as engineering design software utilized in the construction and mining industries.  相似文献   
9.
This study investigates total petroleum hydrocarbon (TPH) removal from residual clayey soil, after a washing procedure, using an electrokinetic process. Eight electrokinetic experiments were carried out to investigate the characteristics of TPH removal. When 0.1 M MgSO4 or 0.1 M NaOH was used as an electrolyte, the electric current rapidly increased within the first 100 or 200 h, respectively. A negatively charged soil surface resulted in a more negative zeta potential and greater electroosmotic flow toward the cathode. Therefore, the accumulated electroosmotic flow (EOF) when using 0.1 M NaOH as the anolyte‐purging solution was higher than when using 0.1 M MgSO4. Although the energy consumption for the two purging solutions was similar, the efficiencies of TPH removal when 0.1 M MgSO4 and 0.1 M NaOH with surfactant were used were 0 and 39%, respectively, because the electroosmotic flow rate increased with TPH removal efficiency. When 5% isopropyl alcohol (IPA) was used as a circulation solution, the electric current increased but the TPH removal was similar to that using water. In terms of energy consumption, the use of a surfactant‐enhanced electrokinetic process with NaOH as electrolyte was effective in removing TPHs from low‐permeability soil.  相似文献   
10.
To distinguish true red tide water (particularly Cochlodinium polykrikoides blooms) from non-red tide water (false satellite high chlorophyll water) in the South Sea of Korea, we developed a systematic classification method using spectral information from MODIS level products and applied it to five different harmful algal bloom events. Red tide and nonred tide waters were classified based on four different criteria. The first step revealed that the radiance peaks of potential red tide water occurred at 555 and 678 nm. The second step separated optically different waters that were influenced by relatively low and high contributions of colored dissolved organic matter (CDOM) (including detritus) to chlorophyll. The third and fourth steps discriminated red tide water from non-red tide water based on the blue-to-green ratio in areas with lower and higher contributions of CDOM to chlorophyll, respectively. After applying the red tide classification (using the four criteria), the spectral response of the red tide water, which is influenced by pigment concentration, showed different slopes for the blue and green bands (lower slope at blue bands and higher slope at green bands). The opposite result was found for non-red tide water, due to decreasing phytoplankton absorption and increasing detritus/CDOM absorption at blue bands. The results were well matched with the discoloration of water (blue to dark red/brown) and delineated the areal coverage of C. polykrikoides blooms, revealing the nature of spatial and temporal variations in red tides. This simple spectral classification method led to increase user accuracy for C. polykrikoides and non-red tide blooms (>46% and >97%) and provided a more reliable and robust identification of red tides over a wide range of oceanic environments than was possible using chlorophyll a concentration, chlorophyll anomaly, fluorescence analysis, or proposed red tide detection algorithms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号