首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   2篇
  国内免费   2篇
地质学   11篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2013年   3篇
  2012年   1篇
  2010年   3篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
我国的地热发电以及部分供暖工程出现了比较严重的结垢现象,阻碍了地热能的大规模开发利用,目前地热市场急需成熟的防垢理论和工艺。地热工程的结垢现象尤以碳酸钙结垢最为普遍,为解决碳酸钙结垢问题,本文以华北保定岩溶地热井结垢为研究对象,通过理论和实验相结合的手段研究分析了垢质成分,成垢机理,结垢位置和过程以及防垢措施。研究结果表明:(1)系统降压造成的闪蒸是碳酸钙结垢的主因,液相二氧化碳逸出到气相是碳酸钙结垢的主要驱动力;(2)根据井口参数,结合质量、动量和能量守恒以及两相流压降理论,可以模拟结垢过程,确定结垢位置以及不同深度处的压力、温度、干度和二氧化碳分压等参数;(3)闪蒸造成的碳酸钙结垢,确定了闪蒸位置和闪蒸压力后,可以通过加压和加注阻垢剂的方式进行阻垢。通过模拟计算,确定了加压防垢系统所需的最低压力,通过控制系统压力可防止闪蒸,抑制二氧化碳逸出造成的结垢。设计了阻垢工艺,研制了阻垢剂加注设备,开展了井下化学阻垢实验并评价了阻垢效果,通过加注阻垢剂可有效阻止90%以上的垢生成,论证了通过加注化学阻垢剂可以有效解决碳酸钙结垢。通过上述研究,积累了从结垢原因分析,结垢位置确定,结垢过程模拟,防垢工艺和设备研发,防垢实践到阻垢效果现场评价一整套经验,可为其他地热井碳酸钙结垢问题的解决提供参考依据。  相似文献   
2.
微咸水膜下滴灌灌溉制度试验研究   总被引:4,自引:0,他引:4  
为了探讨科学合理的微咸水膜下滴灌灌溉制度,在新疆巴音郭楞蒙古自治州水利管理处国家重点灌溉试验站进行了不同灌溉定额、灌水频次的微咸水膜下滴灌大田试验。研究结果表明:①灌溉定额4500m3/hm2、灌水频次10次,灌溉定额3000m3/hm2、灌水频次7次,均有利于保持土壤水分。②当灌溉定额≤4500m3/hm2时,灌溉定额越大,土壤积盐越严重;在灌溉定额一定时,灌溉次数越多,土壤积盐越严重。③当灌溉定额≤4500m3/hm2时,灌溉定额越大,棉花产量越高,微咸水灌溉影响棉花产量的灌溉定额上限在4500m3/hm2左右;灌溉定额多时,灌水次数多棉花产量高,灌溉定额少时,灌水次数少棉花产量高。④灌溉水分生产率随着灌溉定额的增大而减小,在灌溉定额大时,采用少量多次灌溉,在灌溉定额小时,采用多量少次灌溉,均可提高灌溉水分生产率。⑤以节水、控盐和高产为优选标准,当地较为理想的微咸水膜下滴灌模式为灌溉定额3750m3/hm2、灌水次数20次、灌水间隔为7d。  相似文献   
3.
膜下滴灌棉花根系发育特征及其与土壤水盐分布的关系   总被引:4,自引:0,他引:4  
为探讨膜下滴灌条件下水分和盐分对棉花根系空间发育的影响,在花铃期选择相同灌溉制度、咸淡水灌溉的两个膜下滴灌处理田块采集距滴灌带不同距离、不同深度上的根系样品144 件。用1 mm 土筛和手拣将棉花根系从土壤中筛分出来,去除死根,冲洗干净后用扫描仪扫描成tif 格式图像,再用DT-SCAN 软件计算根长密度。对比分析发现膜下滴灌及盐胁迫条件下,咸水灌溉的根系分布范围较大,其总根长密度比淡水大31.69 mm/cm3,根系生长深度也远大于淡水灌溉。咸水灌溉根系分布主要受盐分胁迫,淡水灌溉根系分布主要受水分胁迫。水平方向上距滴头40 cm以远,水分胁迫对根系发育起主导作用。土壤体积含水率在20% 以上、电导率在2 000 μs/cm 以下时可以满足根系的正常生长发育。  相似文献   
4.
通过研究土壤盐分的空间变异,快速准确获取土壤盐分的空间分布是精准农业和环境保护的基础。使用土壤电导率仪(PET2000)网格法在50 m×70 m面积的田块内布点(网格边长5 m),测量棉田表层土壤(0~25 cm深度,每5 cm为一层)电导率;应用ArcGIS9.2中地统计学模块构建、筛选和验证模型;利用地统计学方法研究表层土壤盐分的空间变异规律,进行空间分布预测,并针对棉田表层积盐问题提出了相应的解决措施。结果表明:克里格(Kriging)插值方法中的Rational Quadratic模型适宜预测表层土壤电导率,区内棉田表层盐分的空间变异特征明显,变异系数达到0.578,土壤盐分的空间变异性随深度增大逐渐降低;产生空间变异的主要原因是土壤岩性的空间差异和微咸水灌溉;解决棉田局部积盐的措施是根据土壤盐分空间差异特征的分析与预测进行适时定位灌溉,从而合理利用水资源并改善作物生长环境。  相似文献   
5.
6.
何雨江  丁祥 《地质学报》2020,94(7):2131-2138
通过地温监测、含水层结构和岩性构造辨识,剖析了银川平原西部斜坡区地热田的地温场特征和热储层分布规律,确定了热储随机变量,并分别利用随机变量频率分布和三角分布等蒙特卡罗统计手段识别了随机变量参数,结合热储法计算了典型区地热资源量。研究结果表明:银川平原地热田属深循环中低温传导型地热系统,共分为5个构造分区(西部斜坡区、中部深陷区、东部斜坡凹陷区、东部斜坡隆起区和南部斜坡区)和4个热储层(新近系干沟河组、新近系红柳沟组、古近系清水营组和奥陶系马家沟组)。研究区地热资源储量丰富,垂直地温场温度与地层深度呈正相关关系,主要热储层位于400~800m的渐新统清水营组;研究区热储随机变量包括热储温度、岩石孔隙率、岩石比热容和岩石密度等参数,热储温度随机分布频率为25%、50%、75%、97. 5%的西部斜坡区地热资源量在175. 56×10↑14~230. 04×10↑14 kJ之间,其中,75%的热储温度随机分布频率可作为研究区热储温度随机变量的优选频率,该频率下地热资源储量与热储法分层计算结果标准差仅为4. 21%;利用热储特征分析和蒙特卡洛法的参数识别,能够克服热储层参数的强烈空间变异,为快速精准评价区域地热资源量和科学开发利用地热资源提供新途径。  相似文献   
7.
戴磊  王贵玲  何雨江 《地球科学》2021,46(9):3410-3420
为定量获得土壤结构对其水力性质的指示作用,室内实验选用华北平原子牙河流域原状土样为研究对象,用张力计法和激光粒度分析仪分别测定土壤水分特征曲线和样品粒度分布,基于分形理论计算土壤粒度分布的分形维数,采用实验测定与模型验证相结合的方法对水分特征曲线进行分析.结果表明,土壤颗粒粒度分布在[10 μm,50 μm]区间内的分段分维值是表征土壤粒度累积分布显著上升段特征的关键参数,与0~80 kPa吸力范围内的土壤水分特征曲线幂函数模型拟合参数(a、b)有极显著相关关系.研究区内土壤水分特征曲线以分形形式表达的幂函数模型为:θ=100.78×(3-D)S(D-3)/3,利用土壤结构分形特征能够有效指示其水力性质.   相似文献   
8.
研究土壤的水力性质是进行生态水文模拟、农业水分管理和环境监测的关键,然而强烈的空间变异造成土壤的物性特征异常复杂,特别是水力性质测定困难,试验结果随机性强,耗费大量人力物力,却难以准确描述。本文在综合分析了国内外30余种量化土壤水力性质的研究方法的优劣后,系统总结了分形理论在土壤物性特征研究中的应用,剖析了分形理论与土壤水力性质之间的关系,旨在探讨土壤分形结构在水力性质领域的发展前景,以及在测定水力特性参数时所具备的优势。结果表明:(1)采用分形方法定量研究土壤结构具备可行性;(2)分形结构方法能够指示水力性质,并能为快速准确刻画不同尺度下的土壤水分分布特征提供科学依据;(3)利用已知土壤水力性质建立分形模型可以有效反演土壤结构。  相似文献   
9.
内蒙古呼和浩特市承压地下水水位监测网优化   总被引:1,自引:0,他引:1  
定量评价地下水监测网的合理性对于准确、经济地获取高质量的监测数据尤为重要。本文针对呼和浩特市平原区现行承压水监测网, 以估计误差标准差作为衡量监测网合理与否的特征参数, 借助ArcGIS地学统计模块, 利用普通Kriging插值模型, 对待测点进行插值, 获取估计误差标准差等值线图。结果表明: 监测水位估计误差标准差范围由优化前的0.47~4.44变为优化后的0.5~0.8(除研究区西南边界附近外), 研究区整体估计误差标准差显著减小, 且全区范围内变幅较小。优化后的监测网在满足监测精度需要的同时, 能够较大程度节省监测网的运行费用。研究成果为呼和浩特市平原区承压水水位监测提供一个较优化的监测网布设方案, 进而为研究区承压地下水的合理开发利用以及相关环境地质问题提供真实可靠的数据支撑, 具有重要的应用价值。  相似文献   
10.
利用标定后的TDR100系统原位监测太行山前深厚包气带(30.3 m)的土壤水热动态,根据2011、2012年2 a的监测结果,真实准确透析全剖面土壤水热运移规律。结果表明:厚度大、非均质并受控于多重外界条件的深厚包气带的水热运移,必然是相对滞后的复杂往复运动,水分补给滞后时间为2~3个月;粗颗粒层是良好的输水通道,而细颗粒层(如黏土层)才是决定入渗能力的关键层,对土壤体积含水量变化影响可达15%;浅层水热运移取决于降水蒸发和地表温度,5.0 m以下中深层水热运移常态取决于岩性和地下水位,而强降水入渗和人类活动产生瞬态关键效应。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号