首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8942篇
  免费   1938篇
  国内免费   2474篇
测绘学   979篇
大气科学   1536篇
地球物理   2129篇
地质学   4924篇
海洋学   1329篇
天文学   366篇
综合类   919篇
自然地理   1172篇
  2024年   52篇
  2023年   188篇
  2022年   615篇
  2021年   658篇
  2020年   555篇
  2019年   604篇
  2018年   680篇
  2017年   576篇
  2016年   685篇
  2015年   578篇
  2014年   644篇
  2013年   669篇
  2012年   650篇
  2011年   599篇
  2010年   596篇
  2009年   518篇
  2008年   468篇
  2007年   449篇
  2006年   398篇
  2005年   303篇
  2004年   247篇
  2003年   213篇
  2002年   213篇
  2001年   214篇
  2000年   208篇
  1999年   296篇
  1998年   183篇
  1997年   200篇
  1996年   168篇
  1995年   163篇
  1994年   133篇
  1993年   134篇
  1992年   94篇
  1991年   74篇
  1990年   56篇
  1989年   56篇
  1988年   28篇
  1987年   25篇
  1986年   43篇
  1985年   33篇
  1984年   13篇
  1983年   15篇
  1982年   13篇
  1981年   6篇
  1980年   12篇
  1979年   12篇
  1978年   4篇
  1965年   2篇
  1958年   4篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
1.
Glaciers and snow cover are important constituents of the surface of the Tibetan Plateau. The responses of these phenomena to global environmental changes are sensitive, rapid and intensive due to the high altitudes and arid cold climate of the Tibetan Plateau. Based on multisource remote sensing data, including Landsat images, MOD10A2 snow product, ICESat, Cryosat-2 altimetry data and long-term ground climate observations, we analysed the dynamic changes of glaciers, snow melting and lake in the Paiku Co basin using extraction methods for glaciers and lake, the degree-day model and the ice and lake volume method. The interaction among the climate, ice-snow and the hydrological elements in Paiku Co is revealed. From 2000 to 2018, the basin tended to be drier, and rainfall decreased at a rate of −3.07 mm/a. The seasonal temperature difference in the basin increased, the maximum temperature increased at a rate of 0.02°C/a and the minimum temperature decreased at a rate of −0.06°C/a, which accelerated the melting from glaciers and snow at rates of 0.55 × 107 m3/a and 0.29 × 107 m3/a, respectively. The rate of contribution to the lake from rainfall, snow and glacier melted water was 55.6, 27.7 and 16.7%, respectively. In the past 18 years, the warmer and drier climate has caused the lake to shrink. The water level of the lake continued to decline at a rate of −0.02 m/a, and the lake water volume decreased by 4.85 × 108 m3 at a rate of −0.27 × 108 m3/a from 2000 to 2018. This evaluation is important for understanding how the snow and ice melting in the central Himalayas affect the regional water cycle.  相似文献   
2.
The estimation of hydrologic transit times in a catchment provides insights into the integrated effects of water storage, mixing dynamics, and runoff generation processes. There has been limited effort to estimate transit times in southern boreal Precambrian Shield landscapes, which are characteristically heterogeneous with surface cover including till, thin soils, bedrock outcrops, and depressional wetland features that play contrasting hydrologic roles. This study presents approximately 3.5 years of precipitation and streamflow water isotope data and estimates mean transit times (MTTs) and the young water fraction (py) across six small catchments in the Muskoka-Haliburton region of south-central Ontario. The main objectives were to define a typical range of MTTs for headwater catchments in this region and to identify landscape variables that best explain differences in MTTs/py using airborne light detection and ranging and digital terrain analysis. Of the transit time distributions, the two parallel linear reservoir and gamma distributions best describe the hydrology of these catchments, particularly because of their ability to capture more extreme changes related to events such as snowmelt. The estimated MTTs, regardless of the modelling approach or distribution used, are positively associated with the percent wetland area and negatively with mean slope in the catchments. In this landscape, low-gradient features such as wetlands increase catchment scale water storage when antecedent conditions are dryer and decrease transit times when there is a moisture surplus, which plausibly explains the increases in MTTs and mean annual runoff from catchments with significant coverage of these landscape features.  相似文献   
3.
ABSTRACT

High performance computing is required for fast geoprocessing of geospatial big data. Using spatial domains to represent computational intensity (CIT) and domain decomposition for parallelism are prominent strategies when designing parallel geoprocessing applications. Traditional domain decomposition is limited in evaluating the computational intensity, which often results in load imbalance and poor parallel performance. From the data science perspective, machine learning from Artificial Intelligence (AI) shows promise for better CIT evaluation. This paper proposes a machine learning approach for predicting computational intensity, followed by an optimized domain decomposition, which divides the spatial domain into balanced subdivisions based on the predicted CIT to achieve better parallel performance. The approach provides a reference framework on how various machine learning methods including feature selection and model training can be used in predicting computational intensity and optimizing parallel geoprocessing against different cases. Some comparative experiments between the approach and traditional methods were performed using the two cases, DEM generation from point clouds and spatial intersection on vector data. The results not only demonstrate the advantage of the approach, but also provide hints on how traditional GIS computation can be improved by the AI machine learning.  相似文献   
4.
5.
A formula for the thickness of a shear band formed in saturated soils under a simple shear or a combined stress state has been proposed. It is shown that the shear band thickness is dependent on the pore pressure properties of the material and the dilatancy rate, but is independent of the details of the combined stress state. This is in accordance with some separate experimental observations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
6.
GPS/LEO掩星观测的变分同化技术   总被引:6,自引:0,他引:6  
刘敏  郭鹏 《天文学进展》2006,24(1):27-42
在简单介绍GPS/LEO掩星探测大气的发展历史和科学意义之后,详细阐述了反演的基本原理;分析了标准反演中存在的问题,并说明一维变分同化(1DVAR)在反演方法中的重要性;给出了一维变分同化中价值函数的求解,以及各种同化因子;简单介绍了对当前气象学中普遍使用的四维变分同化(4DVAR);重点讨论了各种同化方法,以及使用各种同化因子的优缺点。最后,通过CHAMP卫星的观测实例分析,验证了GPS数据在数值天气预报(NWP)中的作用,以及相对于标准反演法一维变分对气象要素的改进。  相似文献   
7.
Approach to Mountain Hazards in Tibet, China   总被引:1,自引:1,他引:0  
Tibet is located at the southwest boundary of China. It is the main body of the Qinghai-Tibet Plateau, the highest and the youngest plateau in the world. Owing to complicated geology, Neo-tectonic movements, geomorphology, climate and plateau environment, various mountain hazards, such as debris flow, flash flood, landslide, collapse, snow avalanche and snow drifts, are widely distributed along the Jinsha River (the upper reaches of the Yangtze River), the Nu River and the Lancang River in the east, and the Yarlungzangbo River, the Pumqu River and the Poiqu River in the south and southeast of Tibet. The distribution area of mountain hazards in Tibet is about 589,000 km^2, 49.3% of its total territory. In comparison to other mountain regions in China, mountain hazards in Tibet break out unexpectedly with tremendously large scale and endanger the traffic lines, cities and towns, farmland, grassland, mountain environment, and make more dangers to the neighboring countries, such as Nepal, India, Myanmar and Bhutan. To mitigate mountain hazards, some suggestions are proposed in this paper, such as strengthening scientific research, enhancing joint studies, hazards mitigation planning, hazards warning and forecasting, controlling the most disastrous hazards and forbidding unreasonable human exploring activities in mountain areas.  相似文献   
8.
An elastoplastic model for sands is presented in this paper, which can describe stress–strain behaviour dependent on mean effective stress level and void ratio. The main features of the proposed model are: (a) a new state parameter, which is dependent on the initial void ratio and initial mean stress, is proposed and applied to the yield function in order to predict the plastic deformation for very loose sands; and (b) another new state parameter, which is used to determine the peak strength and describe the critical state behaviour of sands during shearing, is proposed in order to predict simply negative/positive dilatancy and the hardening/softening behaviour of medium or dense sands. In addition, the proposed model can also predict the stress–strain behaviour of sands under three-dimensional stress conditions by using a transformed stress tensor instead of ordinary stress tensor. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
9.
The results of a photometric monitoring of the quasar 4C 38.41, performed at the optical R and B bands in 2002 February–March, are presented. With a 60/90 cm Schmidt telescope at the Xinglong station of the National Astronomical Observatories of China, we observed the source exhibiting amplitude variations of up to 0.78 mag in both bands during the whole campaign. Intraday and even intranight variations are detected as well. A typical variability time-scale of about 36 d is derived from our 2-month observations at the optical bands, which is identical to that found at a radio wavelength of 92 cm, suggesting a common origin for the variations in 4C 38.41 from optical to radio bands.  相似文献   
10.
Debris flow is one of the most destructive phenomena of natural hazards. Recently, major natural haz-ard, claiming human lives and assets, is due to debris flow in the world. Several practical methods for forecasting de-bris flow have been proposed, however, the accuracy of these methods is not high enough for practical use because of the stochastic and non-linear characteristics of debris flow. Artificial neural network has proven to be feasible and use-fill in developing models for nonlinear systems. On the other hand, predicting the future behavior based on a time se-ries of collected historical data is also an important tool in many scientific applications. In this study we present a three-layer feed-forward neural network model to forecast surge of debris flow according to the time series data collect-ed in the Jiangjia Ravine, situated in north part of Yunnan Province of China. The simulation and prediction of debris flow using the proposed approach shows this model is feasible, however, further studies are needed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号