首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   0篇
  国内免费   7篇
地球物理   1篇
地质学   48篇
自然地理   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2016年   2篇
  2013年   18篇
  2012年   2篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2006年   6篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1992年   2篇
排序方式: 共有50条查询结果,搜索用时 31 毫秒
1.
The Antrim Plateau Volcanics, Australia's largest Phanerozoic flood‐basalt province, originally covered an area of at least 300 000 km2 across northern Australia. Stratigraphic constraints indicate that the Antrim Plateau Volcanics are of Early Cambrian age (ca 545–509 Ma), although previous attempts to date the Antrim basalts by radiometric methods have been inconclusive. We present an ion microprobe U–Pb zircon age of 513 ± 12 Ma for the ~250 km‐long Milliwindi dolerite dyke in the west Kimberley. The dolerite is geochemically identical to basalts of the Antrim Plateau Volcanics, and was probably a feeder dyke for basalts that have since been eroded. It is suggested that the Antrim Plateau Volcanics extended hundreds of kilometres further to the west than recognised previously and may have once covered part of the Kimberley block.  相似文献   
2.
段彦学 《云南地质》2001,20(2):144-153
云南白垩系分布在滇中、滇西和澜沧江以西三个地域,彼此之间被深断裂所,它们的地质历程、构造特征各不相同。不能将澜沧江以西勐海、潞西地区的白垩系解体归属不同地层区。澜沧江以西的白垩系,分布于冈瓦纳古陆和古特提斯造带的小型山间盆地,地层层序齐全,岩性、厚度稳定,今古生物化石。有两套岩石序列,三个沉积旋回。  相似文献   
3.
Abstract

Acropolis is an Fe-oxide–copper–gold prospect ~20?km from Olympic Dam, South Australia, and marked by near-coincident gravity and magnetic anomalies. Prospective Fe-oxide–apatite?±?sulfide veins occur in Mesoproterozoic and Paleoproterozoic volcanic and granitoid host units beneath unmineralised sedimentary formations. We have produced a geological map and history of the prospect using data from 16 diamond drill holes, including LA-ICPMS and high-precision CA-TIMS ages. The oldest unit is megacrystic granite of the Donington Suite (ca 1850?Ma). A non-conformity spanning ca 250 My separates the Donington Suite and felsic lavas and ignimbrites of the Gawler Range Volcanics (GRV; 1594.03?±?0.68?Ma). The GRV were intruded by granite of the Hiltaba Suite (1594.88?±?0.50?Ma) and felsic dykes (1593.88?±?0.56?Ma; same age as the Roxby Downs Granite at Olympic Dam). The felsic dykes are weakly altered and lack Fe-oxide–apatite–sulfide veins, suggesting that they post-date the main hydrothermal event. If correct, this relationship implies that the main hydrothermal event at Acropolis was ca 1594?Ma and pre-dated the main hydrothermal event at Olympic Dam. The GRV at Acropolis are the same age as the GRV at Olympic Dam and ca 3–7 My older than the GRV exposed in the Gawler Ranges. The gravity and magnetic anomalies coincide with sections through the GRV, Hiltaba Suite and Donington Suite that contain abundant, wide, Fe-oxide veins. The GRV, Hiltaba Suite and Donington Suite are unconformably overlain by the Mesoproterozoic Pandurra Formation or Neoproterozoic Stuart Shelf sedimentary formations. The Pandurra Formation shows marked lateral variations in thickness related to paleotopography on the underlying units and post-Pandurra Formation pre-Neoproterozoic faults. The Stuart Shelf sedimentary formations have uniform thicknesses.
  1. KEY POINTS
  2. Fe-oxide–apatite?±?sulfide veins are hosted by the Gawler Range Volcanics (1594.03?±?0.68?Ma), the Hiltaba Suite granite (1594.88?±?0.50?Ma) and Donington Suite granite (ca 1850?Ma).

  3. The age of felsic dykes (1593.88?±?0.56?Ma) interpreted to be post-mineralisation implies that the main hydrothermal event at Acropolis was ca 1594?Ma.

  4. The Gawler Range Volcanics at Acropolis are the same age as the Gawler Range Volcanics at Olympic Dam and ca 3 to 7 My older than the Gawler Range Volcanics exposed in the Gawler Ranges.

  相似文献   
4.
香港大屿山残坡积土的残余强度试验研究   总被引:8,自引:1,他引:7  
粘性土的残余强度是边坡稳定性评价、桩基与土的相互作用机理研究及填土边坡设计中的重要参数。本文在综述大量文献的基础上,结合香港大屿山火山岩风化残坡积土的残余强度试验研究,分析了残余强度的测试方法和影响残余强度的因素。研究结果表明,残余强度与有效法向应力间具有明显的非线性关系;与单剪测试结果相比,多级剪测试结果明显偏高。  相似文献   
5.
西准噶尔包古图地区地层火山岩锆石LA-ICP-MS U-Pb年代学研究   总被引:24,自引:11,他引:13  
包古图地区位于西准噶尔东南部,区内出露地层主要为石炭系太勒古拉组、包古图组和希贝库拉斯组,为一套巨厚的半深海相-大陆坡相火山-火山碎屑沉积建造。这套地层的时代归属和地层层序长期以来一直存在争议。本文报导了包古图地区实测地层剖面,并从太勒古拉组玄武岩和包古图组及希贝库拉斯组凝灰岩中分别选出锆石,进行了LA-ICP-MS U-Pb年代学研究,获得206Pb/238U加权平均年龄分别为357.5±5.4Ma、332.1±3.0Ma和336.3±2.5Ma。由此确定这套地层属于早石炭世的杜内阶到维宪阶,由下到上依次为太勒古拉组、包古图组和希贝库拉斯组。  相似文献   
6.
7.
Permian     
Summary Late in the Carboniferous Period or early in the Permian ice covered much of Tasmania (Fig. 30b). The sub‐Permian surface had a relief of several thousand feet with particularly low areas near Wynyard and Point Hibbs and high areas near Cradle Mountain, Devonport, Deloraine, Wylds Crag and Ida Bay and a peninsula in eastern Tasmania (Fig. 30a).

The glaciers from an ice centre north‐west of Zeehan diverged about a higher area near Cradle Mountain. One tongue occupied a deep valley near Wynyard and a lobe fanned out south of the high area to occupy parts of northern and central Tasmania and to override some parts of the east coast peninsula.

West of Maydena the ice scoured shell beds and dumped the shell fragments in the till on the Styx Range. Thus the base of the ice may well have been below sea‐level. Carey and Ahmad (1961) suggested that the Wynyard Tillite was deposited below a “wet‐base” glacier. David (1908, p. 278) suggested deposition from “land ice in the form of a piedmont or of an ice‐sheet” but that near Wynyard the ice came down very close to, if not actually to, sea‐level. The extent of the glaciation and the distribution of erratics of western Tasmanian origin in eastern Tasmania make it seem likely that either a piedmont glacier or an ice‐sheet rather than mountain glaciation was involved.

Following retreat of the glaciers the sea covered the till, probably to a considerable depth, eustatic rise of sea‐level being much more rapid than isostatic readjustment.

The Quamby Group is underlain by or passes laterally into thin conglomerates and sandstones in a number of places, but most of the group appears to be of deep water, partially barred basin origin. Marine oil shales accumulated close to islands. Shallowing of the sea during deposition of the upper part of the Quamby Group seems to be indicated by the fauna and increasing sandiness in marginal areas. Instability in the source areas is shown by the presence of turbidity current deposits in the higher parts of the group. The Golden Valley Group, of Upper Sakmarian and perhaps Lower Artinskian age, was deposited in a shallower sea than the Quamby Group but the deposits are more extensive along the east coast peninsula and on the flanks of the Cradle Mountain island. This anomaly may be explained if the rate of deposition exceeded the rate of rise of sea‐level. The sediments of the Golden Valley Group became finer‐grained upwards in most parts of Tasmania probably indicating reduction in relief of the source area. Some instability is indicated by turbidity current deposits. Uplift of source areas in north‐western Tasmania early in Artinskian time resulted in the spreading of sand over the shallow silts of the Golden Valley Group onto the east coast peninsula and over the Cradle Mountain area. The sand formed a wide coastal plain containing lakes and swamps and the sea was restricted to a small gulf in southern Tasmania during the deposition of the lower part of the Mersey Group. During deposition of this group the sea rose once to form a long, narrow gulf extending as far north as Port Sorell and then retreated. This inundation resulted in the development of two cyclothems in many parts of Tasmania.

A little later in Lower Artinskian time the sea rose and covered most of Tasmania except perhaps the far north‐west. This wide transgression probably resulted from down‐warping as an eustatic rise in sea‐level would be expected to produce thickest deposition over the old gulf in southern Tasmania and along the axis of Mersey Group inundation but the zone of thickest Cascades Group crosses these at a high angle. During deposition of the Cascades Group marine life became very abundant in the shallow sea over which a few icebergs floated. During the Artinskian tectonic instability increased as shown by the increasing number of turbidites in the upper part of the Grange Mudstone and the lower part of the Malbina Formation. The sea became less extensive and the source areas in north‐western and north‐eastern Tasmania were uplifted. The zone of thickest deposition of the Malbina Formation trended north‐north‐westerly. The rapid succession of turbidity currents killed the benthonic fauna and it was only during deposition of the upper part of the formation possibly in Lower Kungurian time that life became abundant again in the Hobart area. The sea spread a little over the east coast peninsula and further instability is recorded in the Risdon Sandstone. The resulting turbidity currents killed the benthonic fauna and it never became properly established again in any part of Tasmania during the Permian. A wide shallow sea covered much of Tasmania and was bordered by low source areas during deposition of the Ferntree Group. The axis of greatest thickness had an almost meridional trend and lay west of that of the Malbina Formation. Late in the Permian, probably in the Tartarian, rejuvenation of the source areas, particularly in western Tasmania, and withdrawal of the sea, resulted in deposition of sands and carbonaceous silts of the Cygnet Coal Measures. The zone of greatest thickness was almost parallel to but west of that of the Ferntree Group.

The thickness of the Permian System and the sheet‐like character of many of the members and formations suggest shelf rather than geosynclinal deposition. The average rate of deposition was of the order of 1 ft. in ten thousand years (about 0–003 mm./annum). However, the sediments differ markedly from those on stable shelves in that many of them are poorly‐sorted. Some of the poor sorting may be attributed to deposition from drifting icebergs but some is due to tectonic instability.

Uplift and downwarping and movement of zones of maximum thickness have been deduced above and it is probable that the tectonic instability started as early as Lower Artinskian and it may have started during Sakmarian (upper part of Quamby Group). Maximum instability seems to have occurred in Middle or Upper Artinskian time (Malbina Formation) and it is probably significant that this was a time of considerable orogenic movement in New South Wales (part of the Hunter‐Bowen Orogeny, Osborne, 1950). Progressive westward movement of zones of maximum thickness of units in Upper Permian time seems to have occurred and this again is reminiscent of the situation at the time in New South Wales (Voisey, 1959, p. 201) but seems to have started later. Uplift and development of a major synclinal structure with a trend approximately north‐north‐westerly occurred late in Permian time.  相似文献   
8.
The Ural Volcanics are a early Devonian, submarine, felsic lava-sill complex, exposed in the western central Lachlan Orogen, New South Wales. The Ural Volcanics and underlying Upper Silurian, deepwater, basin-fill sedimentary rocks make up the Rast Group. The Ural Range study area, centrally located in the Cargelligo 1:100 000 map sheet area, was mapped at 1:10 000 scale. Seventeen principal volcanic facies were identified in the study area, dominated by felsic coherent facies (rhyolite and dacite) and associated monomictic breccia and siltstone-matrix monomictic breccia facies. Subordinate volcaniclastic facies include the pumice-rich breccia facies association, rhyolite – dacite – siltstone breccia facies and fiamme – siltstone breccia facies. The sedimentary facies association includes mixed-provenance and non-volcanic sandstone to conglomerate, black mudstone, micaceous quartz sandstone and foliated mudstone. The succession was derived from at least two intrabasinal volcanic centres. One, in the north, was largely effusive and intrusive, building a lava – sill complex. Another, in the south, was effusive, intrusive and explosive, generating lavas and moderate-volume (~3 km3) pyroclastic facies. The presence of turbidites, marine fossils, very thick massive to graded volcaniclastic units and black mudstone, and the lack of large-scale cross-beds and erosional scours, provide evidence for deposition in a submarine environment below storm wave-base. The Ural Volcanics have potential for seafloor or sub-seafloor replacement massive sulfide deposits, although no massive sulfide prospects or related altered zones have yet been defined. Sparse, disseminated sulfides occur in sericite-altered, steeply dipping shear zones.  相似文献   
9.
Multidisciplinary research during the past 25 years has established that the Acraman impact structure in the 1.59 Ga Gawler Range Volcanics on the Gawler Craton, and an ejecta horizon found 240?–?540 km from Acraman in the ??580 Ma Bunyeroo Formation in the Adelaide Fold Belt and Dey Dey Mudstone in the Officer Basin, record a Late Neoproterozoic (Ediacaran) event of major environmental importance. Research since 1995 has verified Acraman as a complex impact structure that has undergone as much as 3?–?5 km of denudation and which originally had a transient cavity up to 40 km in diameter and a final structural rim possibly 85?–?90 km in diameter. The estimated impact energy of 5.2?×?106 Mt (TNT) for Acraman exceeds the threshold of 106 Mt nominally set for global catastrophe, and the impact probably caused a severe perturbation of the Ediacaran environment. The occurrence of the impact at a low palaeolatitude (12.5 +?7.1/???6.1°) may have magnified the environmental effects by perturbing the atmosphere in both hemispheres. These findings are consistent with independent data from the Ediacaran palynology of Australia and from isotope and biomarker chemostratigraphy that the Acraman impact induced major biotic change. Future research should seek geological, isotopic and biological imprints of the Acraman?–?Bunyeroo impact event across Australia and on other continents.  相似文献   
10.
Peperite is a non‐genetic term used to describe volcanic breccia in which a texture of dark blocks in a light matrix resembles a mixture of salt and pepper. In the Gold Creek Volcanics, peperite is a mixture of partly vesiculated basalt clasts in a mudstone‐sandstone matrix. It is formed by the buoyant intrusion of basaltic magma into wet unconsolidated sediment. The intruding bodies deform and quench, giving rise to discordant masses of hyaloclastic breccia, confined largely to the subsurface. These basalt masses may remain hot enough to locally superheat pore water and produce convective systems where the basalt clasts and fluidized sediment become mixed, forming the distinctive peperite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号