首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   2篇
  2017年   1篇
  2006年   1篇
排序方式: 共有2条查询结果,搜索用时 46 毫秒
1
1.
Ultramafic portions of ophiolitic fragments in the Arabian–Nubian Shield (ANS) show pervasive carbonate alteration forming various degrees of carbonated serpentinites and listvenitic rocks. Notwithstanding the extent of the alteration, little is known about the processes that caused it, the source of the CO2 or the conditions of alteration. This study investigates the mineralogy, stable (O, C) and radiogenic (Sr) isotope composition, and geochemistry of suites of variably carbonate altered ultramafics from the Meatiq area of the Central Eastern Desert (CED) of Egypt. The samples investigated include least-altered lizardite (Lz) serpentinites, antigorite (Atg) serpentinites and listvenitic rocks with associated carbonate and quartz veins. The C, O and Sr isotopes of the vein samples cluster between ?8.1‰ and ?6.8‰ for δ13C, +6.4‰ and +10.5‰ for δ18O, and 87Sr/86Sr of 0.7028–0.70344, and plot within the depleted mantle compositional field. The serpentinites isotopic compositions plot on a mixing trend between the depleted-mantle and sedimentary carbonate fields. The carbonate veins contain abundant carbonic (CO2±CH4±N2) and aqueous-carbonic (H2O-NaCl-CO2±CH4±N2) low salinity fluid, with trapping conditions of 270–300°C and 0.7–1.1 kbar. The serpentinites are enriched in Au, As, S and other fluid-mobile elements relative to primitive and depleted mantle. The extensively carbonated Atg-serpentinites contain significantly lower concentrations of these elements than the Lz-serpentinites suggesting that they were depleted during carbonate alteration. Fluid inclusion and stable isotope compositions of Au deposits in the CED are similar to those from the carbonate veins investigated in the study and we suggest that carbonation of ANS ophiolitic rocks due to influx of mantle-derived CO2-bearing fluids caused break down of Au-bearing minerals such as pentlandite, releasing Au and S to the hydrothermal fluids that later formed the Au-deposits. This is the first time that gold has been observed to be remobilized from rocks during the lizardite–antigorite transition.  相似文献   
2.
The Mihalıççık region (Eskişehir) in NW Turkey includes an ophiolitic assemblage with a serpentinite‐matrix mélange. The serpentinites of this mélange host silica‐carbonate metasomatites which were previously named as listvenites. Our mineralogical and geochemical studies revealed that these alteration assemblages represent members of the listvenitic series, mainly the carbonate rocks, silica‐carbonate rocks and birbirites, rather than true listvenites (sensu stricto). Tectonic activity and lithology are principal factors that control the formation of these assemblages. Carbonatization and silicification of the serpentinite host‐rock is generated by CO2, SiO2‐rich H2O hydrothermal fluid which includes As, Ba, Sb and Sr. Low precious metal (Au, Ag) contents of the alteration assemblages indicate lack of these metals in the fluid. Primary assemblages of the alteration are carbonate rocks that are followed by silica‐carbonate rocks and birbirites, respectively. Petrographic studies and chemical analyses suggested an alkaline and moderate to high temperature (350–400°C) fluid with low oxygen and sulphur fugacity for the carbonatization of the serpentinites. The low temperature phases observed in the subsequent silicification indicated that the fluid cooled during progressive alteration. The increasing Fe‐oxide content and sulphur phases also suggested increasing oxygen and sulphur fugacity during this secondary process and silica‐carbonate rock formation. The occurrence of birbirites is considered as a result of reactivation of tectonic features. These rocks are classified in two sub‐groups; the Group 1 birbirites show analogous rare earth element (REE) trends with the serpentinite host‐rock, and the Group 2 birbirites simulate the REE trends of the nearby tectonic granitoid slices. The unorthodox REE trend of Group 2 birbirites is interpreted to have resulted from a mobilization process triggered by the weathering solutions rather than being products of enrichment by the higher temperature hydrothermal activity. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号