首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   9篇
  国内免费   26篇
大气科学   1篇
地球物理   49篇
地质学   85篇
海洋学   29篇
天文学   9篇
综合类   2篇
自然地理   19篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   1篇
  2018年   6篇
  2017年   5篇
  2016年   8篇
  2015年   13篇
  2014年   8篇
  2013年   11篇
  2012年   6篇
  2011年   11篇
  2010年   6篇
  2009年   12篇
  2008年   2篇
  2007年   12篇
  2006年   8篇
  2005年   7篇
  2004年   10篇
  2003年   9篇
  2002年   13篇
  2001年   5篇
  2000年   5篇
  1999年   5篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1971年   1篇
排序方式: 共有194条查询结果,搜索用时 15 毫秒
1.
Lichen-dominated soil crusts as arthropod habitat in warm deserts   总被引:2,自引:0,他引:2  
Soil crust lichens can be the dominant vegetation in arid lands, yet their importance as habitat to secondary producers is relatively unknown. This study examines the distribution of arthropod communities in the northern Namib Desert to evaluate whether a lichen-rich area is more or less productive than adjacent habitats in terms of the consumers each supports. Arthropods are diverse and highly endemic in the Namib Desert and lichens dominate this desert's extensive gravel plains. We sampled lichen-rich, dwarf shrub, and unvegetated sites and found distinct arthropod assemblages in the lichen-dominated sites, including species unique to lichen sites. Arthropod assemblages in two of the lichen sites were similar to those found in the dwarf shrub site. In a canonical correspondence analysis, crustose lichens and overall lichen cover were key in driving the variance in arthropod assemblages within the lichen sites. Furthermore, lichen morphotypes, overall lichen cover and species richness, were significantly correlated with the representation of arthropod subgroups and arthropod species richness. These findings provide evidence that lichen-dominated soil crusts in the Namib Desert are important supporters of secondary production, warranting more in-depth studies into the ecology and conservation of this lichen-rich habitat in warm deserts.  相似文献   
2.
 The formation of superoxide and hydroxyl radicals at the surface of smectite clays due to oxygen reduction is demonstrated by electron paramagnetic resonance spectroscopy. The yield of hydroxyl radicals is mainly a function of particle size of the clays and depends, to a lesser extent, on the clay lattice iron. Synthetic laponite clay with small platelet size (∼20 nm) and without lattice iron is leading in the formation of hydroxyl radicals followed by montmorillonite (∼200 nm). Fluorohectorite (∼2000 nm) was inactive to hydroxyl radical formation by oxygen reduction. Received: 20 January 2001 / Accepted: 7 August 2001  相似文献   
3.
Fracturing and frictional sliding of quartz and granite under dry condition generates fractoluminescence, charged particle emission and electromagnetic radiation. Various kinds of experiments indicate that surface charge density on fracture or frictional slip surface of quartz and granite is 10−4 to 10−2 C/m2 which is larger than bound charges induced by the disappearance of piezoelectricity due to the release of stress. Hole and electron trapping centers, which is found in semiconductor devices with the Si–SiO2 system, are causes of surface charging on fracture or frictional slip surface of quartz crystal. The quantity of the surface charge is enough to cause corona discharge that can generate earthquake lights. The mechanism considering the hole and electron trapping centers has a probability to explain why non-piezoelectric minerals or rocks generate electromagnetic phenomena. It can be one of origins of seismo-electromagnetic phenomena (SEP).  相似文献   
4.
After the initiation of gravity drainage, water is often assumed to be either (a) draining under unit gradient, or (b) at capillary/gravity equilibrium. Both of these simplifications can be useful, but the regimes of validity of each assumption must be delineated. Water pressures are measured versus time and distance as water drains out of a 1.6 m long sand column to determine the relative effects of capillary and gravitational forces during drainage. For medium sized sands (0.15–0.3 mm in diameter), the capillary pressure is constant in space in a large region of the column for over 12 days, and the water continues to flow under unit gradient for relatively long time scales. Similar results are seen for finer sands, but with a much faster approach to equilibrium. Numerical simulations and analytical estimates are presented and compare favorably to the measurements. Together, the experimental, theoretical and analytical results are used to calculate when capillary/gravity equilibrium is reached as a function of porous media properties and length of the unsaturated zone. The ratio of the length of the unsaturated zone to the bubbling pressure is a key parameter in determining the drainage regime, and that even for relatively short unsaturated zones the equilibrium time scale can be on the order of years.  相似文献   
5.
Pore water pressures (positive and negative) were monitored for four years (1996–1999) using a series of tensiometer‐piezometers at increasing depths in a riverbank of the Sieve River, Tuscany (central Italy), with the overall objective of investigating pore pressure changes in response to ?ow events and their effects on bank stability. The saturated/unsaturated ?ow was modelled using a ?nite element seepage analysis, for the main ?ow events occurring during the four‐year monitoring period. Modelling results were validated by comparing measured with computed pore water pressure values for a series of representative events. Riverbank stability analysis was conducted by applying the limit equilibrium method (Morgenstern‐Price), using pore water pressure distributions obtained by the seepage analysis. The simulation of the 14 December 1996 event, during which a bank failure occurred, is reported in detail to illustrate the relations between the water table and river stage during the various phases of the hydrograph and their effects on bank stability. The simulation, according to monitored data, shows that the failure occurred three hours after the peak stage, during the inversion of ?ow (from the bank towards the river). A relatively limited development of positive pore pressures, reducing the effective stress and annulling the shear strength term due to the matric suction, and the sudden loss of the con?ning pressure of the river during the initial drawdown were responsible for triggering the mass failure. Results deriving from the seepage and stability analysis of nine selected ?ow events were then used to investigate the role of the ?ow event characteristics (in terms of peak stages and hydrograph characteristics) and of changes in bank geometry. Besides the peak river stage, which mainly controls the occurrence of conditions of instability, an important role is played by the hydrograph characteristics, in particular by the presence of one or more minor peaks in the river stage preceding the main one. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
6.
7.
中国春季沙尘天气频数的时空变化及其与地面风压场的关系   总被引:25,自引:4,他引:25  
王小玲  翟盘茂 《气象学报》2004,62(1):96-103
文中利用EOF和SVD方法分析了近半个世纪中国春季沙尘天气频数的时空分布特征及其与近地面风速和海平面气压的关系。中国北方大部分地区春季沙尘天气发生频数近半个世纪呈减少趋势 ,2 0世纪 70年代末以前沙尘天气发生频数较多 ,70年代末开始逐渐减少 ,1997年降到最低值 ,同期中国近地面风速也呈减小趋势 ,两者之间存在显著相关。春季海平面气压场与中国沙尘天气的发生频数有十分密切的联系 ,海平面气压在中高纬度地区降低 ,中低纬度地区升高 ,气压梯度发生改变 ,从而引起地面风速减小 ,进一步影响到沙尘天气发生频数减少  相似文献   
8.
在分析Mohr-Coulomb强度准则和双剪统一强度准则的基础上,提出了主剪面应力对和主剪面应力对的作用这2个新概念,并以此为出发点,通过考虑十二面体单元主剪面上所有3个主剪面应力对的共同作用,在双剪强度准则的基础上提出了一个新准则,并对其作了极限线分析.应用该新强度准则研究了静水压力条件下圆形巷道围岩弹塑性分析和土压力计算问题.研究表明,该准则不仅能较好地非线性反映岩土的3个基本强度特征,还解决了双剪统一准则中存在的双重破坏角问题.  相似文献   
9.
While limiting-equilibrium Mononobe–Okabe type solutions are still widely used in designing rigid gravity and flexible cantilever retaining walls against earthquakes, elasticity-based solutions have been given a new impetus following the analytical work of Veletsos and Younan [23]. The present paper develops a more general finite-element method of solution, the results of which are shown to be in agreement with the available analytical results for the distribution of dynamic earth pressures on rigid and flexible walls. The method is then employed to further investigate parametrically the effects of flexural wall rigidity and the rocking base compliance. Both homogeneous and inhomogeneous retained soil is considered, while a second soil layer is introduced as the foundation of the retaining system. The results confirm the approximate convergence between Mononobe–Okabe and elasticity-based solutions for structurally or rotationally flexible walls. At the same time they show the beneficial effect of soil inhomogeneity and that wave propagation in the underlying foundation layer may have an effect that cannot be simply accounted for with an appropriate rocking spring at the base.  相似文献   
10.
Caldera formation has been explained by magma withdrawal from a crustal reservoir, but little is known about the conditions that lead to the critical reservoir pressure for collapse. During an eruption, the reservoir pressure is constrained to lie within a finite range: it cannot exceed the threshold value for eruption, and cannot decrease below another threshold value such that feeder dykes get shut by the confining pressure, which stops the eruption. For caldera collapse to occur, the critical reservoir pressure for roof failure must therefore be within this operating range. We use an analytical elastic model to evaluate the changes of reservoir pressure that are required for failure of roof rocks above the reservoir with and without a volcanic edifice at Earth's surface. With no edifice at Earth's surface, faulting in the roof region can only occur in the initial phase of reservoir inflation and affects a very small part of the focal area. Such conditions do not allow caldera collapse. With a volcanic edifice, large tensile stresses develop in the roof region, whose magnitude increase as the reservoir deflates during an eruption. The edifice size must exceed a threshold value for failure of the roof region before the end of eruption. The largest tensile stresses are reached at Earth's surface, indicating that faulting starts there. Failure affects an area whose horizontal dimensions depend on edifice and chamber dimensions. For small and deep reservoirs, failure conditions cannot be achieved even if the edifice is very large. Quantitative predictions are consistent with observations on a number of volcanoes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号