首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18541篇
  免费   2397篇
  国内免费   2887篇
测绘学   1171篇
大气科学   1135篇
地球物理   3779篇
地质学   7861篇
海洋学   2094篇
天文学   5195篇
综合类   808篇
自然地理   1782篇
  2024年   52篇
  2023年   149篇
  2022年   391篇
  2021年   511篇
  2020年   580篇
  2019年   613篇
  2018年   512篇
  2017年   566篇
  2016年   582篇
  2015年   643篇
  2014年   1041篇
  2013年   1218篇
  2012年   1055篇
  2011年   1238篇
  2010年   1194篇
  2009年   1531篇
  2008年   1510篇
  2007年   1381篇
  2006年   1336篇
  2005年   1118篇
  2004年   958篇
  2003年   856篇
  2002年   710篇
  2001年   647篇
  2000年   568篇
  1999年   544篇
  1998年   412篇
  1997年   285篇
  1996年   248篇
  1995年   205篇
  1994年   197篇
  1993年   206篇
  1992年   133篇
  1991年   104篇
  1990年   107篇
  1989年   76篇
  1988年   81篇
  1987年   34篇
  1986年   33篇
  1985年   37篇
  1984年   31篇
  1983年   22篇
  1982年   20篇
  1981年   11篇
  1980年   19篇
  1979年   6篇
  1978年   23篇
  1977年   20篇
  1954年   4篇
  1875年   1篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
1.
The groundwater divide is a key feature of river basins and significantly influenced by subsurface hydrological processes. For an unconfined aquifer between two parallel rivers or ditches, it has long been defined as the top of the water table based on the Dupuit–Forchheimer approximation. However, the exact groundwater divide is subject to the interface between two local flow systems transporting groundwater to rivers from the infiltration recharge. This study contributes a new analytical model for two-dimensional groundwater flow between rivers of different water levels. The flownet is delineated in the model to identify groundwater flow systems and the exact groundwater divide. Formulas with two dimensionless parameters are derived to determine the distributed hydraulic head, the top of the water table and the groundwater divide. The locations of the groundwater divide and the top of the water table are not the same. The distance between them in horizontal can reach up to 8.9% of the distance between rivers. Numerical verifications indicate that simplifications in the analytical model do not significantly cause misestimates in the location of the groundwater divide. In contrast, the Dupuit–Forchheimer approximation yields an incorrect water table shape. The new analytical model is applied to investigate groundwater divides in the Loess Plateau, China, with a Monte Carlo simulation process taking into account the uncertainties in the parameters.  相似文献   
2.
The source and hydrochemical makeup of a stream reflects the connectivity between rainfall, groundwater, the stream, and is reflected to water quantity and quality of the catchment. However, in a semi-arid, thick, loess covered catchment, temporal variation of stream source and event associated behaviours are lesser known. Thus, the isotopic and chemical hydrographs in a widely distributed, deep loess, semi-arid catchment of the northern Chinese Loess Plateau were characterized to determine the source and hydrochemical behaviours of the stream during intra-rainfall events. Rainfall and streamflow were sampled during six hydrologic events coupled with measurements of stream baseflow and groundwater. The deuterium isotope (2H), major ions (Cl, SO42−, NO3, Ca2+, K+, Mg2+, and Na+) were evaluated in water samples obtained during rainfall events. Temporal variation of 2H and Cl measured in the groundwater and stream baseflow prior to rainfall was similar; however, the isotope compositions of the streamflow fluctuated significantly and responded quickly to rainfall events, likely due to an infiltration excess, overland dominated surface runoff during torrential rainfall events. Time source separation using 2H demonstrated greater than 72% on average, the stream composition was event water during torrential rainfall events, with the proportion increasing with rainfall intensity. Solutes concentrations in the stream had loglinear relationships with stream discharge, with an outling anomaly with an example of an intra-rainfall event on Oct. 24, 2015. Stream Cl behaved nonconservative during rainfall events, temporal variation of Cl indicated a flush and washout at the onset of small rainfall events, a dilution but still high concentration pattern in high discharge and old water dominated in regression flow period. This study indicates rainfall intensity affects runoff responses in a semi-arid catchment, and the stored water in the thick, loess covered areas was less connected with stream runoff. Solute transport may threaten water quality in the area, requiring further analysis of the performance of the eco-restoration project.  相似文献   
3.
利用近7万个湖南及邻近省份重力观测数据、502个GNSS/水准控制点及数字高程模型,以EIGEN-6C4全球重力场模型作参考重力场,采用顾及地球曲率影响的各类地形质量位及引力的第二类Helmert凝集法严密算法,利用高分辨率地形数据恢复甚短波扰动重力场,确定空间分辨率2′×2′的高精度湖南省似大地水准面模型(HNGG2017)。经外部检核,模型整体精度均优于±0.022 m。与历史模型相比,新模型在湖南北部常德汉寿、西南部永州江永等地区精度得到显著改善。  相似文献   
4.
郭建兵 《北京测绘》2020,(1):123-125
目前,核电站的主管道焊接越来越多的采用了自动焊技术,这有利于提高焊接质量效率,还可以压缩建设成本。然而,主管道自动焊对焊缝的限差较现有工艺要求更高,高精度的测量是实现主管道自动焊的必要条件之一。本文针对主管道自动焊管口组队高精度的技术要求,提出采用激光跟踪仪对主管道自动焊相关的设备进行更为精密的三维工业测量,通过理论技术评定测量精度,然后选择测量仪器和编制具体的测量方案,最终保证了主管道自动焊精确组对的实现。  相似文献   
5.
To date, passive flux meters have predominantly been applied in temperate environments for tracking the movement of contaminants in groundwater. This study applies these instruments to reduce uncertainty in (typically instantaneous) flux measurements made in a low-gradient, wetland dominated, discontinuous permafrost environment. This method supports improved estimation of unsaturated and over-winter subsurface flows which are very difficult to quantify using hydraulic gradient-based approaches. Improved subsurface flow estimates can play a key role in understanding the water budget of this landscape.  相似文献   
6.
Unmanned Underwater Vehicles (UUVs) are increasingly being used in advanced applications that require them to operate in tandem with human divers and around underwater infrastructure and other vehicles. These applications require precise control of the UUVs which is challenging due to the non-linear and time varying nature of the hydrodynamic forces, presence of external disturbances, uncertainties and unexpected changes that can occur within the UUV’s operating environment. Adaptive control has been identified as a promising solution to achieve desired control within such dynamic environments. Nevertheless, adaptive control in its basic form, such as Model Reference Adaptive Control (MRAC) has a trade-off between the adaptation rate and transient performance. Even though, higher adaptation rates produce better performance they can lead to instabilities and actuator fatigue due to high frequency oscillations in the control signal. Command Governor Adaptive Control (CGAC) is a possible solution to achieve better transient performance at low adaptation rates. In this study CGAC has been experimentally validated for depth control of a UUV, which is a unique challenge due to the unavailability of full state measurement and a greater thrust requirement. These in turn leads to additional noise from state estimation, time-delays from input noise filters, higher energy expenditure and susceptibility to saturation. Experimental results show that CGAC is more robust against noise and time-delays and has lower energy expenditure and thruster saturation. In addition, CGAC offers better tracking, disturbance rejection and tolerance to partial thruster failure compared to the MRAC.  相似文献   
7.
Flow through rough fractures is investigated numerically in order to assess the validity of the local cubic law for different fracture geometries. Two‐dimensional channels with sinusoidal walls having different geometrical properties defined by the aperture, the amplitude, and the wavelength of the walls' corrugations, the corrugations asymmetry, and the phase shift between the two walls are considered to represent different fracture geometries. First, it is analytically shown that the hydraulic aperture clearly deviates from the mean aperture when the walls' roughness, the phase shift, and/or the asymmetry between the fracture walls are relatively high. The continuity and the Navier–Stokes equations are then solved by means of the finite element method and the numerical solutions compared to the theoretical predictions of the local cubic law. Reynolds numbers ranging from 0.066 to 66.66 are investigated so as to focus more particularly on the effect of flow inertial effects on the validity of the local cubic law. For low Reynolds number, typically less than 15, the local cubic law properly describes the fracture flow, especially when the fracture walls have small corrugation amplitudes. For Reynolds numbers higher than 15, the local cubic law is valid under the conditions that the fracture presents a low aspect ratio, small corrugation amplitudes, and a moderate phase lag between its walls.  相似文献   
8.
In order to model non‐Fickian transport behaviour in groundwater aquifers, various forms of the time–space fractional advection–dispersion equation have been developed and used by several researchers in the last decade. The solute transport in groundwater aquifers in fractional time–space takes place by means of an underlying groundwater flow field. However, the governing equations for such groundwater flow in fractional time–space are yet to be developed in a comprehensive framework. In this study, a finite difference numerical scheme based on Caputo fractional derivative is proposed to investigate the properties of a newly developed time–space fractional governing equations of transient groundwater flow in confined aquifers in terms of the time–space fractional mass conservation equation and the time–space fractional water flux equation. Here, we apply these time–space fractional governing equations numerically to transient groundwater flow in a confined aquifer for different boundary conditions to explore their behaviour in modelling groundwater flow in fractional time–space. The numerical results demonstrate that the proposed time–space fractional governing equation for groundwater flow in confined aquifers may provide a new perspective on modelling groundwater flow and on interpreting the dynamics of groundwater level fluctuations. Additionally, the numerical results may imply that the newly derived fractional groundwater governing equation may help explain the observed heavy‐tailed solute transport behaviour in groundwater flow by incorporating nonlocal or long‐range dependence of the underlying groundwater flow field.  相似文献   
9.
利用鄂尔多斯地块及其周缘1970~2014年的垂直形变速率场资料,借助负位错反演研究该区域长期应变积累。结果表明,地块东北缘山西断陷带中北段年均能量积累增量、剪应力强度都较高,西南缘六盘山断裂与渭河断裂西段次之;山西断陷带中南段至晋陕交界处年均剪应力强度较高且显示一定程度的能量积累;西秦岭构造区尤其西秦岭北缘断裂西段、晋冀蒙交界区也反映一定程度的能量积累特性。  相似文献   
10.
High-performance simulation of flow dynamics remains a major challenge in the use of physical-based, fully distributed hydrologic models. Parallel computing has been widely used to overcome efficiency limitation by partitioning a basin into sub-basins and executing calculations among multiple processors. However, existing partition-based parallelization strategies are still hampered by the dependency between inter-connected sub-basins. This study proposed a particle-set strategy to parallelize the flow-path network (FPN) model for achieving higher performance in the simulation of flow dynamics. The FPN model replaced the hydrological calculations on sub-basins with the movements of water packages along the upstream and downstream flow paths. Unlike previous partition-based task decomposition approaches, the proposed particle-set strategy decomposes the computational workload by randomly allocating runoff particles to concurrent computing processors. Simulation experiments of the flow routing process were undertaken to validate the developed particle-set FPN model. The outcomes of hourly outlet discharges were compared with field gauged records, and up to 128 computing processors were tested to explore its speedup capability in parallel computing. The experimental results showed that the proposed framework can achieve similar prediction accuracy and parallel efficiency to that of the Triangulated Irregular Network (TIN)-based Real-Time Integrated Basin Simulator (tRIBS).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号