首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   1篇
海洋学   1篇
综合类   2篇
  2013年   1篇
  2012年   1篇
  2004年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Based on more than 30 years observed sectional temperature data since the 1960s, and compared with multi-year wind and Changjiang (Yangtze) River discharge data, spatial-temporal variations of the East China Sea Cold Eddy (ECSCE) in summer was analyzed in relationship to ocean circulation and local atmospheric circulation. Empirical Orthogonal Function (EOF) and Singular Value Decomposition (SVD) analyseswere applied to this study. The results show that: l) The ECSCE in summer possesses significant interannual variabilities, which are directly associated with oceanic and atmospheric circulation anomaly. Main fluctuations demonstrate their falling in basically with E1 Nino events (interannual) and interdecadal variability. 2) The ECSCE in summer is closely related to the variation of the Yellow Sea Warm Current (YSWC) and the Changjiang River discharge. The stronger the YSWC, the more intensive the ECSCE with its center shifting westward,and vice versa. However, a negative correlation between the Changjiang River discharge and the ECSCE strength is shown. The ECSCE was strengthened after the abrupt global climate change affected by the interdecadal variation of the YSWC. 3) SVD analysis suggested a high correlation between the variation of the ECSCE in summer and the anomalous cyclonic atmospheric circulation over the ECS. Intensification of the cyclonic wind strengthens the ECSCE, and vice versa. 4) The cyclonic atmospheric circulation has dominant influence on the interannual variation of the ECSCE, and the influence of the ocean circulation takes the second in. The ECSCE was usually stronger in E1 Nifio years affected by strong cyclonic circulation in the atmosphere. The variation in strength of the ECSCE resulted from the joint effect of both oceanic and atmospheric circulation.  相似文献   
2.
东海冷涡对东亚季风年代际变化   总被引:1,自引:0,他引:1  
张俊鹏  蔡榕硕 《海洋与湖沼》2013,44(6):1427-1435
利用CORA、COADS和SODA 等高分辨率的海洋和大气再分析资料及区域海洋模式(ROMS), 研究了东海冷涡对1976/1977 年前后东亚季风年代际跃变(减弱)的响应。结果表明: (1)1976/1977年前后东亚季风跃变后, 夏季东海冷涡明显增强, 主要表现为冷涡的温度显著降低, 而冬季东海冷涡有所变弱但其温度上升不明显; (2)东亚冬季风跃变后, 济州岛西南侧的黄海暖流减弱, 冷涡区出现一个反气旋式环流异常, 这有利于冬季东海冷涡的减弱; (3)东亚夏季风跃变后, 台湾暖流外海侧分支及济州岛西南侧的黄海暖流分支增强, 使得冷涡区的气旋性环流变强, 这有利于夏季东海冷涡的加强。数值试验的结果表明, 东亚冬、夏季风的跃变在东中国海引起了不同的中尺度海洋环流异常, 从而导致东海冷涡对东亚冬、夏季风的跃变产生不同的响应。  相似文献   
3.
Based on observed temperature data since the 1950s, long-term variability of the summer sharp thermocline in the Yellow Sea Cold Water Mass (YSCWM) and East China Sea Cold Eddy (ECSCE) areas is examined. Relationships between the thermocline and atmospheric and oceanic forcing were investigated using multiyear wind, Kuroshio discharge and air temperature data. Results show that: 1) In the YSCWM area, thermocline strength shows about 4-year and 16-year period oscillations. There is high correlation between summer thermocline strength and local atmospheric temperature in summer and the previous winter; 2) In the ECSCE area, interannual oscillation of thermocline strength with about a 4-year period (stronger in El Ni o years) is strongly correlated with that of local wind stress. A transition from weak to strong thermocline during the mid 1970s is consistent with a 1976/1977 climate shift and Kuroshio volume transport; 3) Long-term changes of the thermocline in both regions are mainly determined by deep layer water, especially on the decadal timescale. However, surface water can modify the thermocline on an interannual timescale in the YSCWM area.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号