首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12497篇
  免费   1853篇
  国内免费   2636篇
测绘学   1782篇
大气科学   1607篇
地球物理   2511篇
地质学   5831篇
海洋学   1777篇
天文学   1099篇
综合类   1003篇
自然地理   1376篇
  2024年   29篇
  2023年   122篇
  2022年   347篇
  2021年   399篇
  2020年   404篇
  2019年   550篇
  2018年   397篇
  2017年   498篇
  2016年   553篇
  2015年   601篇
  2014年   670篇
  2013年   792篇
  2012年   727篇
  2011年   800篇
  2010年   652篇
  2009年   833篇
  2008年   880篇
  2007年   929篇
  2006年   846篇
  2005年   758篇
  2004年   738篇
  2003年   630篇
  2002年   567篇
  2001年   446篇
  2000年   511篇
  1999年   383篇
  1998年   363篇
  1997年   300篇
  1996年   208篇
  1995年   219篇
  1994年   209篇
  1993年   146篇
  1992年   114篇
  1991年   64篇
  1990年   72篇
  1989年   47篇
  1988年   51篇
  1987年   19篇
  1986年   29篇
  1985年   27篇
  1984年   12篇
  1983年   10篇
  1982年   3篇
  1981年   7篇
  1980年   9篇
  1979年   2篇
  1978年   4篇
  1954年   3篇
  1880年   1篇
  1877年   1篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
1.
Forests in the Southeastern United States are predicted to experience future changes in seasonal patterns of precipitation inputs as well as more variable precipitation events. These climate change‐induced alterations could increase drought and lower soil water availability. Drought could alter rooting patterns and increase the importance of deep roots that access subsurface water resources. To address plant response to drought in both deep rooting and soil water utilization as well as soil drainage, we utilize a throughfall reduction experiment in a loblolly pine plantation of the Southeastern United States to calibrate and validate a hydrological model. The model was accurately calibrated against field measured soil moisture data under ambient rainfall and validated using 30% throughfall reduction data. Using this model, we then tested these scenarios: (a) evenly reduced precipitation; (b) less precipitation in summer, more in winter; (c) same total amount of precipitation with less frequent but heavier storms; and (d) shallower rooting depth under the above 3 scenarios. When less precipitation was received, drainage decreased proportionally much faster than evapotranspiration implying plants will acquire water first to the detriment of drainage. When precipitation was reduced by more than 30%, plants relied on stored soil water to satisfy evapotranspiration suggesting 30% may be a threshold that if sustained over the long term would deplete plant available soil water. Under the third scenario, evapotranspiration and drainage decreased, whereas surface run‐off increased. Changes in root biomass measured before and 4 years after the throughfall reduction experiment were not detected among treatments. Model simulations, however, indicated gains in evapotranspiration with deeper roots under evenly reduced precipitation and seasonal precipitation redistribution scenarios but not when precipitation frequency was adjusted. Deep soil and deep rooting can provide an important buffer capacity when precipitation alone cannot satisfy the evapotranspirational demand of forests. How this buffering capacity will persist in the face of changing precipitation inputs, however, will depend less on seasonal redistribution than on the magnitude of reductions and changes in rainfall frequency.  相似文献   
2.
利用内蒙古西部12个台站的地脉动噪声数据,采用噪声谱比法研究台站的场地响应情况。分析表明,台站场地响应按曲线形态可分为3类,且可能受地形地貌、局部构造和台基状况等条件影响。对比分析噪声谱比法与Moya方法的场地响应结果发现,场地响应曲线形态基本一致,只有极少数台站存在明显差异。结果表明,内蒙古西部区域大部分台站的台基状况总体较好,场地响应曲线较为平坦,无明显频率放大点。  相似文献   
3.
4.
5.
The dynamics of co-orbital motion in the restricted three-body problem are investigated by symplectic mappings. Analytical and semi-numerical mappings have been developed and studied in detail. The mappings have been tested by numerical integration of the equations of motion. These mappings have been proved to be useful for a quick determination of the phase space structure reflecting the main characteristics of the dynamics of the co-orbital problem.  相似文献   
6.
7.
8.
Measures for the accuracy assessment of Digital Elevation Models (DEMs) are discussed and characteristics of DEMs derived from laser scanning and automated photogrammetry are presented. Such DEMs are very dense and relatively accurate in open terrain. Built-up and wooded areas, however, need automated filtering and classification in order to generate terrain (bare earth) data when Digital Terrain Models (DTMs) have to be produced. Automated processing of the raw data is not always successful. Systematic errors and many outliers at both methods (laser scanning and digital photogrammetry) may therefore be present in the data sets. We discuss requirements for the reference data with respect to accuracy and propose robust statistical methods as accuracy measures. Their use is illustrated by application at four practical examples. It is concluded that measures such as median, normalized median absolute deviation, and sample quantiles should be used in the accuracy assessment of such DEMs. Furthermore, the question is discussed how large a sample size is needed in order to obtain sufficiently precise estimates of the new accuracy measures and relevant formulae are presented.  相似文献   
9.
From August 2006 to August 2007, the concentrations of dissolved silica (Si(OH)4) were monitored in the surface water of Urasoko Bay and the mouth of the stream that runs into the bay. Urasoko Bay is located on the northern coast of Ishigaki Island, Okinawa, Japan, which is in a subtropical area of the North Pacific Ocean and is surrounded by a relatively poorly developed fringing reef. Added to these samples were freshwater from the upstream area and brackish water that exudes at the beach site, which were collected from April to June 2007. Rainwater samples were also collected during the study period. The concentration of Si(OH)4 generally decreased from upstream to the bay site, and, on clear days, Si(OH)4 data from all study sites (the bay, beach, stream mouth, and upstream) plotted against salinity fell on a single straight line. When the influence of rainwater was, the results were scattered below the straight line, which suggests dilution by rainwater with a much lower Si(OH)4 concentration. These findings show that offshore seawater, rainwater, and upstream freshwater regulate the concentration of Si(OH)4 in the surface water of Urasoko Bay.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号