首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
大气科学   5篇
海洋学   1篇
  2017年   1篇
  2012年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1997年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Laboratory experiments under controlled environmental conditions are a useful tool to investigate the influence of different environmental parameters on VOC emissions from plants individually. Before using the obtained results to interpret measurements under ambient conditions, it has to be ensured that the laboratory system is suitable for performing emission rate measurements under ambient-like conditions to derive algorithms describing the emissions of volatile organic compounds as a function of physical variables like temperature and light intensity. Here we compare results from monoterpene emission rate measurements with Scots pines (Pinus sylvestris L.) under both ambient environmental conditions using a mobile plant enclosure chamber, and under controlled laboratory conditions in a continuously stirred tank reactor. The different analytical instruments to quantify monoterpene emissions were compared in an intercalibration experiment. Measurements of the mixing ratios of -pinene, -pinene, 3-carene, camphene, and limonene on the order of some hundred parts per trillion differed by less than 20%. The laboratory system has proven capable of providing ambient-like conditions and results of monoterpene emission rate measurements under laboratory conditions could be extrapolated to the natural environment. Monoterpene emission rate measurements with identical specimens of Scots pines conducted within small temporal differences under similar laboratory and outdoor conditions agreed well. Both laboratory and outdoor experiments clearly showed that distinct and constant values neither exist for the standard emission rates nor for the emission pattern of monoterpenes from Scots pine. Temporal variations in the standard emission rates from identical specimens and plant-to-plant variations were on the order of one magnitude.  相似文献   
2.
Emissions of volatile organic compounds (VOCs) from sunflower (Helianthus annuus L. cv. giganteus) were measured in a continuously stirred tank reactor. The compounds predominantly emitted from sunflower were: isoprene, the monoterpenes -pinene, -pinene, sabinene, 3-carene and limonene, an oxygenated terpene, not positively identified so far and the sesquiterpene -caryophyllene. Emission rates ranged from 0.8 x 10–16 to 4.3 x 10 –15 mol cm–2 s–1 at a temperature of 25°C and at a light intensity of 820 µEm–2 s–1. A dependence of the emission rates on temperature as well as on light intensity was observed. The emission rates of -pinene, sabinene and thujene from beech (Fagus sylvatica L.) were also affected by temperature as well as by light intensity. Our results suggest that an emission algorithm for all compounds emitted from sunflower and beech has to consider temperature and light intensity simultaneously. The observations strongly indicate that the emissions of VOCs from sunflower and beech are in part closely coupled to the rate of biosynthesis and in part originate from diffusion out of pools. The emission rates can be described by an algorithm that combines the model given by Tingey and coworkers with the algorithm given by Guenther and coworkers after slight modification.  相似文献   
3.
4.
Current inventories of terpenes released from vegetation consider only the short-term influences of light and temperature on emissions to simulate temporal variation during the year. We studied whole canopy emissions from young Pinus pinea during a 15-month enclosure in greenhouse chambers and examined data for other long-term influences. Mean daytime emission rates strongly increased during spring, reached an annual maximum of 200 pmol m–2 total needle area s–1 (1.1 g g–1 leaf dry weight h–1) between mid June and mid August, strongly declined in fall and reached an annual minimum of 1 pmol m–2 s–1 (0.006 g g–1 h–1) between January and February. Normalization to standard temperature and light conditions did not change the annual time course of emissions, but reduced summer to winter ratio from a factor of 200 to about 45. Seasonal variation was characterized also by changes in terpene composition: among the six main compounds, three (t--ocimene, linalool, 1.8-cineol) were exclusively emitted during sunlit hours in the main vegetation period, whereas the other (limonene, -pinene, myrcene) were emitted day and night and throughout the seasons. The results suggest that different terpene sources in P. pinea foliage exist and that a great part of the annual emission course observed here results from seasonal influences on these sources. A global model to simulate plant emissions is proposed, which accounts for seasonal influences on emissions in addition to the short-term effects of temperature and light. The model is tested on field data and discussed for its general application.  相似文献   
5.
为了研究中国沿海海藻中的活性化学成分, 利用正相硅胶柱色谱、Sephadex LH-20 柱色谱、反相HPLC 及重结晶等手段, 从采自青岛的褐藻叉开网翼藻(Dictyopteris divaricata Okam.)中首次分离得到了6 个单萜类化合物, 经红外波谱(IR), 质谱(MS)及核磁共振波谱(1H NMR、13C NMR)等现代波谱技术鉴定为loliolide (1), isololiolide (2), 3β-hydroxy-5α,6α-epoxy-7-megastigmen-9-one (3), dehydrovomifoliol(4), (3R)-4-[(2R,4S)-2-hydroxy-2,6,6-trimethylcyclohexylidene]-3-buten-2-oneiol (5), (3R)-4-[(2R,4S)-4-acetoxy-2-hydroxy-2,6,6-trimethylcyclohexylidene]-3-buten-2-one (6)。并通过MTT 法对所得化合物进行细胞毒活性筛选, 通过比色法进行乙酰胆碱酯酶抑制活性筛选。  相似文献   
6.
The present paper summarises results on the emission of biogenicvolatile organic compounds (BVOC) achieved within the frame of thenational `German Tropospheric Research Programme' (TFS) between 1997 and2000. Field measurements were carried out at the meteorologicalmonitoring station `Hartheimer Wald' located in the vicinity of Freiburg(upper Rhine valley), Germany, within a pine plantation dominated byScots pine (Pinus sylvestris L.). The measured BVOC emissionrates were used to determine the daily and seasonal variation of BVOCemission and its dependence on important meteorological and plantphysiological parameters. In parallel, laboratory experiments usingyoung trees of pine (P. sylvestris), poplar (Populustremula ×P. alba) and pedunculate oak (Quercusrobur L.) were performed, and the influence of abiotic (e.g.,light, temperature, seasonality, flooding) factors on the biosynthesisand emission of BVOC was quantified. Based on these data, emissionalgorithms were evaluated and a process-oriented numerical model for thesimulation of the isoprene emission by plants was developed. Inaddition, newly calculated land use and tree species distributions wereused for the calculation of an actual BVOC emission inventory ofGermany.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号