首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   18篇
  国内免费   16篇
测绘学   4篇
大气科学   41篇
地球物理   9篇
地质学   22篇
海洋学   1篇
综合类   3篇
自然地理   16篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   5篇
  2017年   4篇
  2016年   4篇
  2015年   3篇
  2014年   5篇
  2013年   6篇
  2012年   9篇
  2011年   2篇
  2010年   6篇
  2008年   2篇
  2007年   5篇
  2006年   5篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   5篇
  2000年   2篇
  1999年   4篇
  1996年   1篇
  1995年   1篇
  1992年   3篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   3篇
  1980年   2篇
排序方式: 共有96条查询结果,搜索用时 265 毫秒
11.
NOAA RFE 2.0在西藏高原的验证   总被引:1,自引:0,他引:1  
随着卫星探测技术的不断提高和资料处理方法的不断改进,出现了许多卫星遥感降水估算产品。每种产品都有优点及不足,且卫星间接式降水估算方法的精度也有限,但对地形复杂常规气象站台站稀少且分布极不均匀的大面积地区如西藏高原来说,卫星遥感不失为估算区域降水的有效方法之一。鉴于卫星遥感降水估算精度的局限性,每种产品需要利用地面观测数据来定量化降水估算误差,分析和评价这些资料的可用性。利用NOAA气候预测中心(CPC)研发的RFE 2.0降水估算产品,从西藏高原东南部到西北部不同气候区选取11个典型气象站2005—2006年6—9月的日降水量观测资料,验证了RFE 2.0降水估算产品在西藏高原的应用效果。结果表明,西藏高原的主要气候区RFE 2.0估算值与地面观测值之间的相关系数在0.45~0.86,平均为0.74;RFE 2.0估算的正确率POD (Probability Of Detection)一般大于73%,而空报率FAR(False Alarm Rate)为2%~12%;仅在喜马拉雅南麓地区估算精度相对较差。   相似文献   
12.
为了研究大气污染对太行山中部地区地表风的影响,我们对阳泉、榆社(高山站),石家庄、邢台(平原站)4个站点1966~2005年间的能见度、近地面温度、近地面风速数据进行了统计计算与趋势分析。结果显示:在平原站能见度相对山坡站下降更加明显的背景下,平原站的近地面温度、近地面风速、850hPa风速都呈下降趋势;而山坡站的近地面温度、近地面风速呈上升趋势。分析表明:(1)由于气溶胶的辐射效应与冷却效应,抑制了垂直通量的上下传输,致使平原站下午的近地面气温呈下降趋势,平原站和高山站的地表风速呈相反的变化趋势。(2)平原站850hPa (与高山站高度相近)风速呈现下降趋势,印证了高山站的近地面风速增加是气溶胶的辐射效应减弱了垂直能量交换造成的。   相似文献   
13.
研究季节性放牧对植被耗水量、水分利用效率的影响,是探索如何提高高寒草甸水源涵养能力的重要内容之一。以青藏高原三江源高寒草甸季节性放牧样地与自然放牧样地为研究对象,分析了季节性放牧和自然放牧条件下高寒草甸植被耗水量、水分盈亏量、水分利用效率(WUE)的动态变化及其与环境因素的关系。结果表明:在植被生长季(5-9月),季节性放牧样地和自然放牧样地植被耗水量在5月开始增加, 7月达最高,分别为160.94 mm和145.96 mm,季节性放牧样地植被总耗水量(395.52 mm)比自然放牧样地(348.14 mm)高13.61%。生长季平均来看,季节性放牧样地和自然放牧样地5-9月水分正盈余,分别为13.58 mm和70.96 mm,但在植物生长旺季(8月)略有亏缺。季节性放牧样地和自然放牧样地植被耗水量均与降水量呈弱的正相关关系。季节性放牧样地植被地上净初级生产量(ANPP)、地下净初级生产量(BNPP)和总的净初级生产量(NPP)比自然放牧样地分别高32.54 g·m-2、5.96 g·m-2、38.50 g·m-2,季节性放牧样地ANPP的水分利用效率(WUE)比自然放牧样地高53.85%,而BNPP、NPP的WUE比自然放牧样地分别低13.06%和9.97%。这表明,季节性放牧可提高植被生产量和耗水量,但对高寒草甸WUE的影响因放牧方式不同导致地上、地下生物量分配格局不同而有所差异。  相似文献   
14.
青藏高原积雪对高亚洲地区水和能量循环起着重要的反馈和调节作用,其变化影响着融雪性河流流量,对下游水资源和经济活动具有重要影响。中分辨率成像光谱仪(MODIS)具有较高的时空分辨率,被广泛应用于积雪遥感动态监测,然而光学遥感积雪受云层影响严重,且青藏高原地区水汽分布不均,局地对流活跃,积雪的赋存时间变化快,这给高原地区逐日积雪监测及其气候学制图带来挑战。在考虑青藏高原地形和积雪分布特征情况下,结合现有的云覆盖下积雪判别算法,采用8个不同方法的组合,逐步实现MODIS逐日无云积雪算法。选取2009年10月1日-2011年4月30日两个积雪季为研究期,并采用145个地面台站观测雪深数据对去云算法各步骤过程开展精度验证,结果表明:当积雪深度>3 cm时,逐日无云积雪产品总分类精度达到96.6%,积雪分类精度达83%,积雪判对概率(召回率)达到89.0%,算法可实现青藏高原地区逐日无云积雪动态监测和积雪覆盖气候学数据重建,对高亚洲地区的水、生态和灾害等全球环境变化影响研究具有重要的意义。  相似文献   
15.
Land use change is the result of the interplay between socioeconomic, institutional and environmental factors, and has important impacts on the functioning of socioeconomic and environmental systems with important tradeoffs for sustainability, food security, biodiversity and the vulnerability of people and ecosystems to global change impacts. Based on the results of the First Land Use Survey in Tibet Autonomous Region carried out in the late 1980s, land use map of Lhasa area in 1990 was compiled for the main agricultural area in Lhasa valley using aerial photos obtained in April, May and October 1991 and Landsat imagery in the late 1980s and 1991 as remotely sensed data sources. Using these remotely sensed data, the land use status of Lhasa area in 1991, 1992, 1993, 1995, 1999 and 2000 were mapped through updating annual changes of cultivated land, artificial forest, grass planting, grassland restoration, and residential area and so on. Land use map for Lhasa area in 2007 was made using ALOS AVNIR-2 composite images acquired on October 24 and December 26, 2007 through updating changes of main land use types. According to land use status of Lhasa area in 1990, 1995, 2000 and 2007, the spatial and temporal land use dynamics in Lhasa area from 1990 to 2007 are further analyzed using GIS spatial models in this paper.  相似文献   
16.
西藏高原典型草地地上生物量遥感估算   总被引:3,自引:0,他引:3  
准确估算草地地上生物量对合理规划区域畜牧业、评估草地植被的生态效益有重要意义.利用每月两次的野外调查资料和对应的MODIS植被指数,以GIS空间数据处理技术和多元统计分析方法等为手段,建立了西藏高寒草甸、高寒草原和温性草原3个典型草地类型的地上生物量遥感估算模型和方法.结果表明:MODIS植被指数更适合于高寒草甸和高寒草原的地上生物量估算,对于高寒草甸,最佳估算模型是基于归一化植被指数(normalized difference vegetation index,NDVI)的三次多项式,其相关系数为0.82;对高寒草原,则是基于增强型植被指数(enhanced vegetation index,EVI)的三次多项式,相关系数达0.83;由于温性草原存在很强的空间异质性,估算效果较其他2个草地类型差.MODIS植被指数对草地生长期鲜草生物量的估算和模拟效果要优于总地上生物量.在生长期,高寒草甸和高寒草原的鲜草生物量与植被指数之间的相关系数都大于0.8,最高达0.92;对温性草原,两者的相关系数也均大于0.67,其中,NDVI是高寒草甸和温性草原鲜草生物量估算的最佳植被指数,对高寒草原则是EVI.对同一草地类型,由于地上生物量差异较小,使得相比其他模型,线性或多项式回归模型更适合于西藏高原草地地上生物量的估算.  相似文献   
17.
蜀南地区茅口组为一套沉积稳定的巨厚层生物碎屑灰岩,基质致密性脆。中二叠世末的东吴运动使蜀南地区茅口组顶部发育古风化壳岩溶,古岩溶地区水系控制着古岩溶的发育和演化。在研究古地貌恢复方法的基础上,分析研究区地层特征和区域构造背景,采用印模法进行古地貌恢复,进而研究了古岩溶地区的水系发育特征。在此基础上,结合风化壳表面侵蚀溶蚀特征、沉积物性质、地貌组合形态、钻井和地震资料,把研究区划分为岩溶台地、岩溶陡坡、岩溶缓坡及岩溶盆地4种二级地貌单元和溶丘洼地、岩溶槽谷、峰林平原等10种三级地貌单元,进一步分析了各种地貌单元的岩溶特征,为下一步的储集层预测提供了有利的目标。  相似文献   
18.
在系统评估青藏高原积雪观测典型气象站历史定位坐标精度基础上,利用站点雪深资料对NOAA IMS 4 km和1 km分辨率雪冰产品在青藏高原的精度和适用性进行了验证和评估,定量分析了IMS 4 km到1 km空间分辨率提高和气象站历史定位与GPS定位坐标之间的差异对青藏高原IMS积雪监测精度的影响。结果表明:青藏高原个别气象站历史坐标与当前GPS接收机定位之间存在较大的差异,如安多气象站经度偏小0.6°,纬度偏大0.08°。IMS 4 km雪冰产品在青藏高原的总精度介于76.4%~83.2%,平均为80.1%,积雪分类精度介于35.8%~60.7%,平均为47.2%,平均误判率为17.1%,平均漏判率为45.5%,总体上呈现地面观测的积雪日数越多、平均雪深越大,其总体监测精度越低,而积雪分类精度越高的特点。IMS分辨率从4 km到1 km总体精度平均提高了2.9%,积雪分类精度平均提高了0.9%,主要是由于个别站点的精度提升较大引起的,对高原多数台站积雪监测精度的改进和提升很小。除个别台站外,目前气象站历史坐标和GPS定位坐标之间的差异,对IMS 4 km积雪监测精度验证结果没有影响。然而,今后随着卫星遥感技术的发展,更高时空分辨率的遥感积雪产品将用于积雪监测和研究,精确的地面观测站坐标信息是对这些遥感数据开展精度验证与实际应用的前提。  相似文献   
19.
近30年青藏高原雪深时空变化特征分析   总被引:3,自引:2,他引:1  
除多  洛桑曲珍  林志强  杨勇 《气象》2018,44(2):233-243
利用1981—2010年地面雪深观测资料较系统地分析了近30年青藏高原(以下简称高原)积雪深度的时空变化特点。主要结论如下:(1)高原雪深大值区主要在喜马拉雅山脉南麓,小值区则在高原南部干暖河谷和北部柴达木盆地,30年间高原平均最大雪深出现了显著减少趋势,减幅达0.55cm·(10a)-1,1997年前后高原雪深出现了由大到小的气候突变。(2)春季是高原平均积雪深度最大的季节,30年里平均最大雪深下降趋势非常显著,下降幅度为0.47cm·(10a)-1,且在1998年出现了由大到小的气候突变。(3)秋、冬季,高原平均最大雪深减少趋势不明显,但在不同区域雪深增减趋势不尽相同。秋季56%的台站呈减少趋势,而31%的台站有不同程度的增加;冬季61%的台站出现了减少趋势,而且减幅较大的台站基本分布在高原西南,而31%的台站则出现了增加趋势,多数分布在高原东部。(4)夏季高原积雪分布极为有限,仅在海拔和纬度较高的高寒地区有积雪,近30年雪深减少趋势同样显著。  相似文献   
20.
为满足应急气象服务需求,2013 2014年在西藏自治区强降雪和雪灾易发及重点积雪区域气象站安装了4套SR-50A超声波雪深观测系统,首次实现了西藏高原雪深自动观测和数据实时传输。利用12:30加密和08:00(北京时)常规人工雪深观测数据对4个站SR-50A雪深观测数据进行了评估和对比分析。结果表明:(1)SR-50A与人工观测的平均雪深偏差范围在±2 cm之内。雪深越大,平均均方根误差越小,观测精度越高。SR-50A传感器更为适合雪深较大地区的积雪监测。(2)SR-50A对西藏高原的雪深具有较好的监测能力,与人工观测雪深具有较好的一致性,4个观测点的线性相关系数在0.81~0.97,呈现极为显著的线性关系。(3)大风、局地太阳光照条件、气温和地表特征等因素通过风吹雪和融雪引起观测场内积雪分布不均匀,加之仪器是固定点观测,人工观测是观测场内3个点的雪深平均值,这些是SR-50A与人工观测雪深差异较大的主要原因。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号