首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   14篇
  国内免费   50篇
测绘学   1篇
大气科学   63篇
地球物理   3篇
海洋学   1篇
自然地理   5篇
  2012年   1篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1998年   6篇
  1997年   3篇
  1996年   4篇
  1995年   4篇
  1994年   2篇
  1992年   5篇
  1991年   3篇
  1989年   1篇
  1988年   7篇
  1987年   1篇
  1986年   5篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
排序方式: 共有73条查询结果,搜索用时 937 毫秒
31.
In this paper, the principle to determine the atmospheric columnar Mie optical depth from downward total solar radiative flux is theoretically studied, and the effect on Mie optical depth solution of the errors in surface albedo, sin-gle scattering albedo, asymmetrical factor of scattering phase function, instrumental constant and the approximate expression of diffusion flux is analy/ed, and then a method for determining surface albedo in shorter wavelength range is presented.  相似文献   
32.
The ozone data observed by TOMS in every 5°N are extended into the phase space to describe the characteristics of ozone with phase trace. First of all, the fractional dimension of the ozone layer is calculated. Then.the phase points are regarded as some discrete characteristics solution, and the parameters of mathematical model which describe the time variation of system state are retrieved, so that the nonlinear dynamic system which reflects the short-term variation of zonal average ozone layer over the tropics is rebuilt.  相似文献   
33.
This paper presents and analyzes experimental results in simultaneous determination of atmospheric columnar aerosol size distribution, refractive index and surface albedo by use of the radiance data in almucantar measured by a radiometer. 32 groups of data measured in Beijing during winter show that the imaginary part of refractive index for 0.6943 μm wavelength ranges from 6.022 to 0.079 with a mean of 0.0527. The mean real part and surface albedo are 1.537 and 0.287, respectively. The imaginary part was found to be less in autumn than that in winter, especially after raining. For 0.399 μm and 0.6943 μm wavelengths, the mean surface albedos are 0.101 and 0.222, and the mean imaginary parts are 0.0241 and 0.0129, respectively.  相似文献   
34.
一个三维Monte-Carlo地气耦合辐射传输模式   总被引:1,自引:1,他引:0  
建立了一个可靠和较高计算效率的三维Monte-Carlo地气耦合辐射传输模式(3DMC).该模式在光子释放和定位、地气耦合、辐射率高分辨模拟计算和计算效率等方面有所发展.  相似文献   
35.
本文发展了一个从宽带水平面太阳直接辐射日曝辐量 (总辐射与散射辐射日曝辐量之差) 反演光谱大气气溶胶光学厚度的方法, 包括建立一个 “等效” 的瞬时太阳天顶角模型, 并提出了一个基于气溶胶标高的云影响甄别方法。对该反演方法的数值模拟和误差分析表明: “等效” 瞬时太阳天顶角模型的不稳定性引起的光学厚度反演误差平均为3.66%; 光学厚度日变化对一段较长时间的平均光学厚度的影响不显著; 订正造成的散射辐射误差≤20%时, 光学厚度平均偏差≤4%。通过与AERONET产品的比对验证表明: 本文发展的光学厚度反演方法和云影响甄别方法都是有效的; 晴空反演的0.75 μm光学厚度与AERONET的相关系数超过0.95, 平均误差约0.02; 云甄别方法计算的季节和年平均光学厚度与AERONET具有较好的一致性。  相似文献   
36.
A parameterized transmittance model(PTR) for ozone and water vapor monochromatic transmittance calculation in the solar-to-near-infrared spectrum 0.3-4 μm with a spectral resolution of 5 cm-1 was developed based on the transmittance data calculated by Moderate-resolution Transmittance model(MODTRAN).Polynomial equations were derived to represent the transmittance as functions of path length and airmass for every wavelength based on the least-squares method.Comparisons between the transmittances calculated using PTR and MODTRAN were made,using the results of MODTRAN as a reference.Relative root-mean-square error(RMSre) was 0.823% for ozone transmittance.RMSre values were 8.84% and 3.48% for water vapor transmittance ranges of 1-1×10 18 and 1-1×10 3,respectively.In addition,the Stratospheric Aerosol and Gas Experiment II(SAGEII) ozone profiles and University of Wyoming(UWYO) water vapor profiles were applied to validate the applicability of PTR model.RMSre was 0.437% for ozone transmittance.RMSre values were 8.89% and 2.43% for water vapor transmittance ranges of 1-1×10 18 and 1-1×10 6,respectively.Furthermore,the optical depth profiles calculated using the PTR model were compared to the results of MODTRAN.Absolute RMS errors(RMSab) for ozone optical depths were within 0.0055 and 0.0523 for water vapor at all of the tested altitudes.Finally,the comparison between the solar heating rate calculated from the transmittance of PTR and Line-by-Line radiative transfer model(LBLRTM) was performed,showing a maximum deviation of 0.238 K d-1(6% of the corresponding solar heating rate calculated using LBLRTM).In the troposphere all of the deviations were within 0.08 K d-1.The computational speed of PTR model is nearly two orders of magnitude faster than that of MODTRAN.  相似文献   
37.
近年来大气遥感研究进展   总被引:3,自引:2,他引:1  
本文着重介绍中国科学院大气物理研究所2003年以来在大气遥感研究方面的主要进展与成果,内容包括:(1)遥感技术与设备的发展;(2)大气气溶胶遥感;(3)云遥感;(4)大气微量气体遥感;(5)反演方法发展;(6)大气辐射传输算法研究。气溶胶的光学特性遥感研究是近年来热点之一,本文简要论述在气溶胶光学特性地基和卫星遥感反演算法、中国大气气溶胶光学特性时空分布特性、气溶胶辐射强迫遥感研究等方面所取得的成果。  相似文献   
38.
An analytical dependence of the optical depth solution to lidar equation on boundary values was confirmed. According to the dependence this paper analyzed the sensitivity of lidar equation solutions obtained by forward and backward integration algorithms to the boundary values and quantitatively expounded an error limit to the boundary values under a given inversion accuracy. Furthermore, this paper presented a method for determination of the far-end boundary value in the case of inhomogeneous atmosphere, improving the accuracy of lidar equation solution.  相似文献   
39.
从太阳总辐射信息反演云光学厚度的理论研究   总被引:1,自引:0,他引:1  
邱金桓 《大气科学》1996,20(1):12-21
本文从理论上探讨了从全波段太阳总辐射信息反演云光学厚度的一个新方法,并分析了引起云光学厚度解的误差的主要因子。理论分析和数值试验表明,在大气满足水平均一的条件下,本方法的云光学厚度解的精度主要取决于气溶胶光学特性的确定误差,如果气溶胶光学厚度的误差在30%以内,或折射率虚部的误差在0.02以内,云光学厚度解的误差一般在15%以内。本文还发展了一个二层模式的半经验的δ-Eddington近似,其精度优于Eddington和δ-Eddington近似,而且无须知道云和气溶胶消光系数的垂直分布,适用于本反演算法。  相似文献   
40.
昆明地面生物有效紫外辐照度的初步计算   总被引:12,自引:0,他引:12  
近年来,大气平流层臭氧含量普遍呈下降趋势。这将对人类的生存环境构成极大威胁, 应当引起人们的高度重视。 其中,太阳紫外辐射是一大因素。 太阳紫外光( UVB和UVA,尤其是波长为280~320 nm)对动植物生长及人类健康具有重要的生物学效应 。但太阳光在大气中的传输过程极其复杂,涉及到大气臭氧吸收、空气分子散射、 气溶胶颗粒以及云滴的散射等作用。 针对昆明地处低纬高原、季风云系影响显著等特点 , 本文在同时考虑上述几种情况下, 用二流模式(two-stream model)方法对太阳紫外辐射传输问题进行了研究,得出了一些有意义的计算结果,并对其作了讨论。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号