首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1832篇
  免费   121篇
  国内免费   30篇
测绘学   74篇
大气科学   146篇
地球物理   383篇
地质学   666篇
海洋学   172篇
天文学   330篇
综合类   7篇
自然地理   205篇
  2023年   12篇
  2022年   7篇
  2021年   38篇
  2020年   47篇
  2019年   65篇
  2018年   70篇
  2017年   73篇
  2016年   93篇
  2015年   75篇
  2014年   74篇
  2013年   145篇
  2012年   82篇
  2011年   113篇
  2010年   95篇
  2009年   118篇
  2008年   97篇
  2007年   95篇
  2006年   86篇
  2005年   60篇
  2004年   66篇
  2003年   54篇
  2002年   40篇
  2001年   32篇
  2000年   38篇
  1999年   27篇
  1998年   27篇
  1997年   15篇
  1996年   22篇
  1995年   14篇
  1994年   12篇
  1993年   9篇
  1992年   12篇
  1991年   13篇
  1990年   12篇
  1989年   12篇
  1988年   9篇
  1987年   7篇
  1986年   4篇
  1985年   13篇
  1984年   15篇
  1983年   13篇
  1982年   13篇
  1981年   9篇
  1980年   4篇
  1979年   7篇
  1978年   11篇
  1977年   6篇
  1974年   4篇
  1973年   3篇
  1972年   3篇
排序方式: 共有1983条查询结果,搜索用时 78 毫秒
111.
The pressure dependence of melt viscosities on the join diopside-albite has been studied using falling-sphere viscometry. The five melt compositions investigated are: diopside, Ab25Di75, Ab50Di50, Ab75Di25 and albite. Experiments were performed at 1500° and 1600°C and at pressures of 5, 10, 15, 20 and 25 kbar. The positive and negative pressure dependence of the viscosity of diopside and albite, respectively, were confirmed. All intermediate compositions show an initial decrease in viscosity with increasing pressure; however, melt of Ab25Di75 composition passes through a minimum viscosity at approximately 12 kbar and 1600°C. This behavior is analogous to the variation in the viscosity of water with pressure at low temperature.

It is suggested that the three-dimensional, fully polymerized, albite structure dominates flow at low pressures. With increasing pressure, disruption of this structure and decrease in the average size of the flow units leads to domination by the diopside structure. The variation in viscosity with composition along the join at one atmosphere can be adequately modelled using the and (1965) configurational entropy model with an additional two-lattice configurational entropy of mixing term. The pressure dependence of viscosity in the diopside-albite system, however, cannot be predicted by the model, because there is an absence of information on the pressure dependence of the model parameters.

It is probable that relatively polymerized magmas (e.g. rhyolites to SiO2-saturated basalts) show a negative pressure dependence of viscosity to depths where they originate in the lower crust or upper mantle. In contrast, the most depolymerized, naturally-occurring melts, such as strongly SiO2-undersaturated basalts and picrites, may exhibit a viscosity minimum. The viscosity of these melts may be sufficiently high at depths within the upper mantle to inhibit their segregation, rise and eventual eruption at the surface.  相似文献   

112.
The velocity-stress formulation for propagation of elastic seismic waves through 2D heterogeneous transversely isotropic media of arbitrary orientation is presented. The equations are recast into a finite-difference scheme and solved numerically using fourth-order spatial operators and a second-order temporal operator on a staggered grid. Absorbing, free-surface and symmetry boundary conditions have been implemented. Test cases compare well with other published solutions. Synthetic seismograms are calculated over two idealized models: (i) vertical fractures in granite with a dolerite sill reflector and (ii) a dipping anisotropic shale. Comparisons with the isotropic counterparts show significant differences which may have to be accounted for in seismic processing in the future.  相似文献   
113.
Three high erosivity conditions (50 mm hr?1, 100 mm hr?1, and 200 mm hr?1) were generated in a laboratory using a rainfall simulator and coherent soil block samples from fourteen different soil erodibility conditions. The data acquired supports the theoretical contention that soil loss should not increase as a simple linear function of storm intensity. Rather, a variable relationship is caused by the rupturing of surface seals and the changing relative significance of splash, wash and rainwash processes. Slope angle appears to influence soil loss at the higher erosivity conditions of 100 mm hr?1 and 200 mm hr?1 on slopes that were either very steep (> 20°) or very shallow (< 3°), but on moderate slopes the relationship is unclear. Examination of the variation of soil loss with erosivity when soil loss for a specific high erosivity condition is known revealed that conversion and power factors are of doubtful value and little generality. A satisfactory predictive equation, a power curve, is seen to be of value only when comparing rainwash soil loss between the higher erosivity conditions. The relationship is most safely considered as soil and site specific. Where the influence of slope and soil erodibility are disregarded, a strong association between soil loss and rainfall intensity is found. That soil loss, and hence, soil erodibility varies non-uniformly with erosivity is clear. The findings indicate caution is required when comparing conclusions drawn from studies based upon different erosivity conditions.  相似文献   
114.
Sediment accumulation rate studies utilizing excess 210Pb and 137Cs were conducted as part of recent investigations of biogeochemical cycling at a single site in Cape Lookout Bight, a rapidly changing coastal basin on the Outer Banks of North Carolina (U.S.A.). Cores three meters in length reveal a depositional history for the bight interior characterized by a gradual transition in texture from coarse-grained to fine-grained material over the period 1946–1979. This transition is controlled by progressive enclosure of the bight by an active northerly migrating recurved spit. The textural gradation is periodically interrupted by layers of well-sorted sand associated with major storm events. Lead-210 data indicate that the upper meter of the sediment has accumulated at a rate of 3.35 to 4.71 g · cm?2 · yr?1 or approximately 8.4 to 11.8 cm · yr?1 (at ø = 0.84). Below 120 cm depth, dilution of clay and silt by low activity sand necessitates correction of the 210Pb profile in order to establish a geochronology. Grain size 210Pb distribution measurements at three depths reveal that the specific activity (dpm · g?1) of clay is 3.2 times that of silt and 24.7 times that of sand. Corrections of bulk sediment excess 210Pb activities based on these measurements lead to dates for textural changes which are consistent with charted changes in basin morphology and major storm events.Sixteen 137Cs measurements between 33–241 cm depth reveal a peak activity at 105–115 cm and indicate a minimum sedimentation rate of approximately 2.7 g · cm?2 · yr?1.  相似文献   
115.
The aqueous geochemistry of Zn, Cu, Cd, Fe, Mn and As is discussed within the context of an anaerobic treatment wetland in Butte, Montana. The water being treated had a circum-neutral pH with high concentrations of trace metals and sulfate. Reducing conditions in the wetland substrate promoted bacterial sulfate reduction (BSR) and precipitation of dissolved metal as sulfide minerals. ZnS was the most common sulfide phase found, and consisted of framboidal clusters of individual spheres with diameters in the submicron range. Some of the ZnS particles passed through the subsurface flow, anaerobic cells in suspended form. The concentration of "dissolved" trace metals (passing through a 0.45 μm filter) was monitored as a function of H2S concentration, and compared to predicted solubilities based on experimental studies of aqueous metal complexation with dissolved sulfide. Whereas the theoretical predictions produce "U-shaped" solubility curves as a function of H2S, the field data show a flat dependence of metal concentration on H2S. Observed metal concentrations for Zn, Cu and Cd were greater than the predicted values, particularly at low H2S concentration, whereas Mn and As were undersaturated with their respective metal sulfides. Results from this study show that water treatment facilities employing BSR have the potential to mobilize arsenic out of mineral substrates at levels that may exceed regulatory criteria. Dissolved iron was close to equilibrium saturation with amorphous FeS at the higher range of sulfide concentrations observed (>0.1 mmol H2S), but was more likely constrained by goethite at lower H2S levels. Inconsistencies between our field results and theoretical predictions may be due to several problems, including: (i) a lack of understanding of the form, valence, and thermodynamic stability of poorly crystalline metal sulfide precipitates; (ii) the possible influence of metal sulfide colloids imparting an erroneously high "dissolved" metal concentration; (iii) inaccurate or incomplete thermodynamic data for aqueous metal complexes at the conditions of the treatment facility; and (iv) difficulties in accurately measuring low concentrations of dissolved sulfide in the field.  相似文献   
116.
A fingernail clam (Sphaerium simile, Sphaeriidae) from Science Lake, a small watershed located in Allegany State Park, New York, USA and a zebra mussel (Dreissena polymorpha, Dreissenidae) from Keuka Lake, New York, the third largest Finger Lake of central New York, were selected to evaluate the applicability of using 18O(CaCO3) and 13O(CaCO3) values for sub-weekly climate records. Seasonal variation in 18O(CaCO3) values was compared with predicted equilibrium values to test the hypothesis that lacustrine molluscs produce shell aragonite according to environmental variables. For the purpose of comparison, aragonite temperature-fractionation equations determined by Grossman& Ku (1986) and Patterson et al. (1993) were used. Sphaerium simile appears to produce 18O(CaCO3) values predicted by Patterson et al. (1993), while Dreissena polymorpha produces 18O(CaCO3) values in agreement with Grossman & Ku (1986). We attribute the difference to family-specific temperature-fractionation relationships. Because both types of mollusc record climate variables with a high degree of integrity, they should each serve as excellent paleoclimate proxies.The fingernail clam collected from a small watershed exhibits higher variation about the seasonal pattern than did the zebra mussel collected from a large watershed. This is attributed to the increased sensitivity of the small watershed to storm perturbation. Analysis of fossil molluscs from such watersheds might be useful in discerning paleo-storminess.  相似文献   
117.
Analysis of sustained long-period activity at Etna Volcano, Italy   总被引:1,自引:0,他引:1  
Following the installation of a broadband network on Mt. Etna, sustained Long-Period (LP) activity was recorded accompanying a period of total quiescence and the subsequent onset of the 2004–2005 effusive episode. From about 56000 events detected by an automatic classification procedure, we analyse a subset of about 3000 signals spanning the December 17th, 2003–September 25th, 2004, time interval. LP spectra are characterised by several, unevenly-spaced narrow peaks spanning the 0.5–10 Hz frequency band. These peaks are common to all the recording sites of the network, and different from those associated with tremor signals. Throughout the analysed time interval, LP spectra and waveforms maintain significant similarity, thus indicating the involvement of a non-destructive source process that we interpret in terms of the resonance of a fluid-filled buried cavity. Polarisation analysis indicates radiation from a non-isotropic source involving large amounts of shear. Concurrently with LP signals, recordings from the summit station also depict Very-Long-Period (VLP) pulses whose rectilinear motion points to a region located beneath the summit craters at depths ranging between 800 and 1100 m beneath the surface. Based on a refined repicking of similar waveforms, we obtain robust locations for a selected subset of the most energetic LP events from probabilistic inversion of travel-times calculated for a 3D heterogenous structure. LP sources cluster in a narrow volume located beneath the summit craters, and extending to a maximum depth of ≈ 800 m beneath the surface. No causal relationships are observed between LP, VLP and tremor activities and the onset of the 2004–2005 lava effusions, thus indicating that magmatic overpressure played a limited role in triggering this eruption. These data represent the very first observation of LP and VLP activity at Etna during non-eruptive periods, and open the way to the quantitative modelling of the geometry and dynamics of the shallow plumbing system.  相似文献   
118.
It is well known that terrain may vary markedly over small areas and that statistics used to characterise spatial variation in terrain may be valid only over small areas. In geostatistical terminology, a non-stationary approach may be considered more appropriate than a stationary approach. In many applications, local variation is not accounted for sufficiently. This paper assesses potential benefits in using non-stationary geostatistical approaches for interpolation and for the assessment of uncertainty in predictions with implications for sampling design. Two main non-stationary approaches are employed in this paper dealing with (1) change in the mean and (2) change in the variogram across the region of interest. The relevant approaches are (1) kriging with a trend model (KT) using the variogram of residuals from local drift and (2) locally-adaptive variogram KT, both applied to a sampled photogrammetrically derived digital terrain model (DTM). The fractal dimension estimated locally from the double-log variogram is also mapped to illustrate how spatial variation changes across the data set. It is demonstrated that estimation of the variogram of residuals from local drift is worthwhile in this case for the characterisation of spatial variation. In addition, KT is shown to be useful for the assessment of uncertainty in predictions. This is shown to be true even when the sample grid is dense as is usually the case for remotely-sensed data. In addition, both ordinary kriging (OK) and KT are shown to provide more accurate predictions than inverse distance weighted (IDW) interpolation, used for comparative purposes.  相似文献   
119.
120.
The formation of lahars and a debris avalanche during Holocene eruptions of the Spurr volcanic complex in south-central Alaska have led to the development of volcanic debris dams in the Chakachatna River valley. Debris dams composed of lahar and debris-avalanche deposits formed at least five times in the last 8000–10,000 years and most recently during eruptions of Crater Peak vent in 1953 and 1992. Water impounded by a large debris avalanche of early Holocene (?) age may have destabilized an upstream glacier-dammed lake causing a catastrophic flood on the Chakachatna River. A large alluvial fan just downstream of the debris-avalanche deposit is strewn with boulders and blocks and is probably the deposit generated by this flood. Application of a physically based dam-break model yields estimates of peak discharge (Qp) attained during failure of the debris-avalanche dam in the range 104<Qp<106 m3 s−1 for plausible breach erosion rates of 10–100 m h−1. Smaller, short-lived, lahar dams that formed during historical eruptions in 1953, and 1992, impounded smaller lakes in the upper Chakachatna River valley and peak flows attained during failure of these volcanic debris dams were in the range 103<Qp<104 m3 s−1 for plausible breach erosion rates.Volcanic debris dams have formed at other volcanoes in the Cook Inlet region, Aleutian arc, and Wrangell Mountains but apparently did not fail rapidly or result in large or catastrophic outflows. Steep valley topography and frequent eruptions at volcanoes in this region make for significant hazards associated with the formation and failure of volcanic debris dams.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号