首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1826篇
  免费   121篇
  国内免费   30篇
测绘学   74篇
大气科学   146篇
地球物理   383篇
地质学   660篇
海洋学   172篇
天文学   330篇
综合类   7篇
自然地理   205篇
  2023年   12篇
  2022年   7篇
  2021年   38篇
  2020年   47篇
  2019年   65篇
  2018年   70篇
  2017年   73篇
  2016年   93篇
  2015年   75篇
  2014年   74篇
  2013年   145篇
  2012年   82篇
  2011年   113篇
  2010年   95篇
  2009年   118篇
  2008年   97篇
  2007年   95篇
  2006年   86篇
  2005年   60篇
  2004年   66篇
  2003年   54篇
  2002年   40篇
  2001年   32篇
  2000年   38篇
  1999年   27篇
  1998年   27篇
  1997年   15篇
  1996年   19篇
  1995年   14篇
  1994年   11篇
  1993年   8篇
  1992年   11篇
  1991年   13篇
  1990年   12篇
  1989年   12篇
  1988年   9篇
  1987年   7篇
  1986年   4篇
  1985年   13篇
  1984年   15篇
  1983年   13篇
  1982年   13篇
  1981年   9篇
  1980年   4篇
  1979年   7篇
  1978年   11篇
  1977年   6篇
  1974年   4篇
  1973年   3篇
  1972年   3篇
排序方式: 共有1977条查询结果,搜索用时 31 毫秒
141.
Echelle spectra have been obtained of the Ca  II H and K lines for a sample of metal-poor subdwarf stars as well as for a number of nearby Population I dwarfs selected from among those included in the Mount Wilson HK survey. The main conclusion of this paper is that Ca  II H- and K-line emission does occur among subdwarfs. It is particularly notable among those subdwarfs with colours of B − V ≥0.75; all such stars observed exhibit chromospheric emission, although emission is observed among some subdwarfs bluer than this colour. The Ca  II K emission profile in most subdwarfs exhibits an asymmetry of V / R >1, similar to that seen in the integrated light of the solar disc. Two quantitative indicators of the contrast between the peaks in the emission profile and the neighbouring photospheric line profile are introduced. Measurements of these indicators show that the level of Ca  II emission among the subdwarfs is similar to that among low-activity Population I dwarfs.  相似文献   
142.
We discuss the formation of spectral features in the decelerating ejecta of gamma-ray bursts, including the possible effect of inhomogeneities. These should lead to blueshifted and broadened absorption edges and resonant features, especially from H and He. An external neutral ISM could produce detectable H and He, as well as Fe X-ray absorption edges and lines. Hypernova scenarios may be diagnosed by Fe Kα and H Lyα emission lines.  相似文献   
143.
We present a method of determining lower limits on the masses of pre-main-sequence (PMS) stars and so constraining the PMS evolutionary tracks. This method uses the redshifted absorption feature observed in some emission-line profiles of T Tauri stars, indicative of infall. The maximum velocity of the accreting material measures the potential energy at the stellar surface, which, combined with an observational determination of the stellar radius, yields the stellar mass. This estimate is a lower limit owing to uncertainties in the geometry and projection effects. Using available data, we show that the computed lower limits can be larger than the masses derived from PMS evolutionary tracks for M   0.5 M. Our analysis also supports the notion that accretion streams do not impact near the stellar poles but probably hit the stellar surface at moderate latitudes.  相似文献   
144.
Spherical aggregates of orthopyroxene are reported from some parts of the Bushveld Complex in a variety of host rocks.Detailed mapping has shown that these spherical aggregates, comprising pyroxenite spheroids in a quartz-norite matrix, are contact phenomena and not stratigraphic markers. Orthopyroxene, biotite and amphibole are enriched in spheroids relative to matrix; their mineral chemistry showing a fairly constant orthopyroxene and plagioclase composition through the spheroids and into the matrix, indicating in-situ formation.Bulk chemistry shows spheroid to matrix tie-lines orthogonal to those generally accepted for silicate liquid immiscibility, but other chemical information is consistent with the occurrence of immiscibility.The formation of the aggregates may be related to the industrial process of spherical agglomeration, by which spheroids are formed by the introduction of an immiscible “bridging liquid” to the melt — probably derived from the floor rocks in this case. The mechanism accounts for the field relationships, petrography and chemistry of the aggregate-matrix system. The petrology of the process equates with a special case of silicate liquid immiscibility induced by local contamination and ageing of the original magma.A similar “bridging liquid” mechanism could also account for the formation of the so-called “boulder bed” beneath the Merensky Reef.  相似文献   
145.
Errors are considered in the outer zone contribution to oceanic undulation differences as obtained from a set of potential coefficients complete to degree 180. It is assumed that the gravity data of the inner zone (a spherical cap), consisting of either gravity anomalies or gravity disturbances, has negligible error. This implies that error estimates of the total undulation difference are analyzed. If the potential coefficients are derived from a global field of 1°×1° mean anomalies accurate to εΔg=10 mgal, then for a cap radius of 10°, the undulation difference error (for separations between 100 km and 2000 km) ranges from 13 cm to 55 cm in the gravity anomaly case and from 6 cm to 36 cm in the gravity disturbance case. If εΔg is reduced to 1 mgal, these errors in both cases are less than 10 cm. In the absence of a spherical cap, both cases yield identical error estimates: about 68 cm if εΔg=1 mgal (for most separations) and ranging from 93 cm to 160 cm if εΔg=10 mgal. Introducing a perfect 30-degree reference field, the latter errors are reduced to about 110 cm for most separations.  相似文献   
146.
147.
Abstract

We present an analysis of current‐meter, sea‐level and hydrographic data collected in the Strait of Belle Isle and the northeastern Gulf of St Lawrence. From an array of moorings in the Strait from July to October 1980, we calculate a net transport into the Gulf of 0.13 × 106 m3 s?1 and show that the mean and eddy fluxes of heat through the Strait represented a net loss of heat to the northeastern Gulf. The estimated rate of loss of heat is less than the long‐term mean computed by Bugden (1981) but becomes comparable if adjusted for interannual changes of transport and water temperature. Moreover, the 1980 data permit the permanent tide‐gauge stations in the Strait at West Ste Modeste and Savage Cove to be levelled relative to one another, thus allowing surface currents to be calculated from sea‐level alone. Hence the long‐term wintertime transport into the Gulf can be calculated after fractional effects on the vertical structure of the flow are considered. During an average winter it appears that advection through the Strait can account for about 35% of the Gulf Intermediate Layer. A multiple regression involving average Intermediate Layer temperatures over 9 years suggests that winter air temperature in the Gulf, representative of atmospheric cooling, and sea‐level difference across the Strait, representative of advection, are equally important variables and together account for 50% of the Layer's temperature variability. Analysis of current‐meter, sea‐level and hydrographic data collected in 1975 supports earlier hypotheses that the strongest inflow of water with ? < 0° C and salinity between 32 and 3 3 should occur in winter. It appears that during the 1975 field program the inflow was about 0.6 × 106 m3 s?1, which is about twice the long‐term average for January to May.  相似文献   
148.
Historical changes in the level of Lake Bosumtwi, Ghana, have been simulated using a catchment‐scale hydrological model in order to assess the importance of changes in climate and land use on lake water balance on a monthly basis for the period 1939–2004. Several commonly used models for computing evaporation in data‐sparse regions are compared, including the Penman, the energy budget, and the Priestley–Taylor methods. Based on a comparison with recorded lake level variations, the model with the energy‐budget evaporation model subcomponent is most effective at reproducing observed lake level variations using regional climate records. A sensitivity analysis using this model indicates that Lake Bosumtwi is highly sensitive to changes in precipitation, cloudiness and temperature. However, the model is also sensitive to changes in runoff related to vegetation, and this factor needs to be considered in simulating lake level variations. Both interannual and longer‐term changes in lake level over the last 65 years appear to have been caused primarily by changes in precipitation, though the model also suggests that the drop in lake level over the last few decades has been moderated by changes in cloudiness and temperature over that time. Based on its effectiveness at simulating the magnitude and rate of lake level response to changing climate over the historical record, this model offers a potential future opportunity to examine the palaeoclimatic factors causing past lake level fluctuations preserved in the geological record at Lake Bosumtwi. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
149.
“Salt” giants are typically halite‐dominated, although they invariably contain other evaporite (e.g. anhydrite, bittern salts) and non‐evaporite (e.g. carbonate, clastic) rocks. Rheological differences between these rocks mean they impact or respond to rift‐related, upper crustal deformation in different ways. Our understanding of basin‐scale lithology variations in ancient salt giants, what controls this and how this impacts later rift‐related deformation, is poor, principally due to a lack of subsurface datasets of sufficiently regional extent. Here we use 2D seismic reflection and borehole data from offshore Norway to map compositional variations within the Zechstein Supergroup (ZSG) (Lopingian), relating this to the structural styles developed during Middle Jurassic‐to‐Early Cretaceous rifting. Based on the proportion of halite, we identify and map four intrasalt depositional zones (sensu Clark et al., Journal of the Geological Society, 1998, 155, 663) offshore Norway. We show that, at the basin margins, the ZSG is carbonate‐dominated, whereas towards the basin centre, it becomes increasingly halite‐dominated, a trend observed in the UK sector of the North Sea Basin and in other ancient salt giants. However, we also document abrupt, large magnitude compositional and thickness variations adjacent to large, intra‐basin normal faults; for example, thin, carbonate‐dominated successions occur on fault‐bounded footwall highs, whereas thick, halite‐dominated successions occur only a few kilometres away in adjacent depocentres. It is presently unclear if this variability reflects variations in syn‐depositional relief related to flooding of an underfilled presalt (Early Permian) rift or syn‐depositional (Lopingian) rift‐related faulting. Irrespective of the underlying controls, variations in salt composition and thickness influenced the Middle Jurassic‐to‐Early Cretaceous rift structural style, with diapirism characterising hangingwall basins where autochthonous salt was thick and halite‐rich and salt‐detached normal faulting occurring on the basin margins and on intra‐basin structural highs where the salt was too thin and/or halite‐poor to undergo diapirism. This variability is currently not captured by existing tectono‐stratigraphic models largely based on observations from salt‐free rifts and, we argue, mapping of suprasalt structural styles may provide insights into salt composition and thickness in areas where boreholes are lacking or seismic imaging is poor.  相似文献   
150.
Extensional faults and folds exert a fundamental control on the location, thickness and partitioning of sedimentary deposits on rift basins. The connection between the mode of extensional fault reactivation, resulting fault shape and extensional fold growth is well‐established. The impact of folding on accommodation evolution and growth package architecture, however, has received little attention; particularly the role‐played by fault‐perpendicular (transverse) folding. We study a multiphase rift basin with km‐scale fault displacements using a large high‐quality 3D seismic data set from the Fingerdjupet Subbasin in the southwestern Barents Sea. We link growth package architecture to timing and mode of fault reactivation. Dip linkage of deep and shallow fault segments resulted in ramp‐flat‐ramp fault geometry, above which fault‐parallel fault‐bend folds developed. The folds limited the accommodation near their causal faults, leading to deposition within a fault‐bend synclinal growth basin further into the hangingwall. Continued fold growth led to truncation of strata near the crest of the fault‐bend anticline before shortcut faulting bypassed the ramp‐flat‐ramp structure and ended folding. Accommodation along the fault‐parallel axis is controlled by the transverse folds, the location and size of which depends on the degree of linkage in the fault network and the accumulated displacement on causal faults. We construct transverse fold trajectories by tracing transverse fold hinges through space and time to highlight the positions of maximum and minimum accommodation and potential sediment entry points to hangingwall growth basins. The length and shape of the constructed trajectories relate to the displacement on their parent faults, duration of fault activity, timing of transverse basin infill, fault linkage and strain localization. We emphasize that the considerable wavelength, amplitudes and potential periclinal geometry of extensional folds make them viable targets for CO2 storage or hydrocarbon exploration in rift basins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号