首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1838篇
  免费   118篇
  国内免费   30篇
测绘学   74篇
大气科学   146篇
地球物理   383篇
地质学   669篇
海洋学   172篇
天文学   330篇
综合类   7篇
自然地理   205篇
  2023年   12篇
  2022年   7篇
  2021年   38篇
  2020年   47篇
  2019年   65篇
  2018年   70篇
  2017年   73篇
  2016年   93篇
  2015年   75篇
  2014年   74篇
  2013年   145篇
  2012年   82篇
  2011年   113篇
  2010年   95篇
  2009年   118篇
  2008年   97篇
  2007年   95篇
  2006年   86篇
  2005年   60篇
  2004年   66篇
  2003年   54篇
  2002年   40篇
  2001年   32篇
  2000年   38篇
  1999年   27篇
  1998年   27篇
  1997年   15篇
  1996年   22篇
  1995年   14篇
  1994年   12篇
  1993年   9篇
  1992年   12篇
  1991年   13篇
  1990年   13篇
  1989年   13篇
  1988年   9篇
  1987年   8篇
  1986年   4篇
  1985年   13篇
  1984年   15篇
  1983年   13篇
  1982年   13篇
  1981年   9篇
  1980年   4篇
  1979年   7篇
  1978年   11篇
  1977年   6篇
  1974年   4篇
  1973年   3篇
  1972年   3篇
排序方式: 共有1986条查询结果,搜索用时 15 毫秒
941.
942.
943.
The photometric properties of the nucleus of Comet 9P/Tempel 1 are studied from the disk-resolved color images obtained by Deep Impact (DI). Comet Tempel 1 has typical photometric properties for comets and dark asteroids. The disk-integrated spectrum of the nucleus of Tempel 1 between 309 and 950 nm is linear without any features at the spectral resolution of the filtered images. At V-band, the red slope of the nucleus is 12.5±1% per 100 nm at 63° phase angle, translating to B-V=0.84±0.01, V-R=0.50±0.01, and R-I=0.49±0.02. No phase reddening is confirmed. The phase function of the nucleus of Tempel 1 is constructed from DI images and earlier ground-based observations found from the literature. The phase coefficient is determined to be β=0.046±0.007 mag/deg between 4° and 117° phase angle. Hapke's theoretical scattering model was used to model the photometric properties of this comet. Assuming a single Henyey-Greenstein function for the single-particle phase function, the asymmetry factor of Tempel 1 was fitted to be g=−0.49±0.02, and the corresponding single-scattering albedo (SSA) was modeled to be 0.039±0.005 at 550 nm wavelength. The SSA spectrum shows a similar linear slope to that of the disk-integrated spectrum. The roughness parameter is found to be 16°±8°, and independent of wavelength. The Minnaert k parameter is modeled to be 0.680±0.014. The photometric variations on Tempel 1 are relatively small compared to other comets and asteroids, with a ∼20% full width at half maximum of albedo variation histogram, and ∼3% for color. Roughness variations are evident in one small area, with a roughness parameter about twice the average and appearing to correlate with the complex morphological texture seen in high-resolution images.  相似文献   
944.
Heavily compacted lands, typical of traditional surface mine reclamation techniques, have been shown to hinder tree growth, increase levels of flooding, and produce suboptimal water quality. Utilizing loose‐dumped spoil, in accordance with the Forestry Reclamation Approach (FRA), has demonstrated success with regards to promoting tree growth and survival; however, additional information is needed to assess the potential of FRA to ameliorate other environmental concerns related to water quantity. To better understand the hydrologic characteristics of loose‐dumped spoil, key hydrograph parameters (discharge volume, peak discharge, discharge duration, lag time, and response time) were monitored for three common spoil types: (1) predominately brown weathered sandstone, (2) predominately gray weathered sandstone, and (3) a mixture of both sandstones and shale. Although spoil types were found to differ hydrologically, these differences were relatively minor. Measured discharge volumes were low (averaging 12% of rainfall for all events and treatments), peak discharge rates were small (between 2·5 × 10?5 and 3 × 10?3 m3/s), and the duration of discharge was long (6 days on average). From a hydrologic perspective, the results of this study indicate that mine spoils need not be segregated for reclamation as long as the spoil is placed in accordance with the loose‐dumped techniques as outlined in the FRA. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
945.
A simple expression for vertical convective fluxes in planetary atmospheres   总被引:1,自引:0,他引:1  
We explore the vertical convective flux Fc in a radiative-convective grey atmosphere. An expression of the form Fc=Fsτo/(C+o) appears useful, where Fs is the shortwave flux absorbed at the base of an atmosphere with longwave optical depth τo and C and D are constants. We find excellent agreement with an idealized grey radiative-convective model with no shortwave absorption for D=1 and C=1∼2 depending on the surface-atmosphere temperature contrast and on the imposed critical lapse rate. Where shortwave absorption is correlated with longwave opacity, as in the atmospheres of Earth and Titan, C=2, D=2 provides an excellent fit, validated against the present terrestrial situation and the results of a nongrey model of Titan's strongly antigreenhouse atmosphere under a wide range of conditions. The expression may be useful for studying the energetics of planetary climates through time where there is insufficient data to constrain more elaborate models.  相似文献   
946.
Following on from our recent Paper I, we present theoretical models of Wolf–Rayet (WR) stars for non-solar metallicities from   Z = 0.03  to 0.0001 by mass fraction with different mass-loss rate assumptions. We find that some single WR stars may still form even at the lowest metallicities, but whether this occurs or not depends critically on the upper cut-off point of the initial mass function used. As at solar metallicity, a population of binaries is required to fully reproduce WR star observations. For most scenarios, these binaries dominate the low-metallicity WR population but probably not the enrichment. We find comparable carbon enrichment from single WR stars to that from asymptotic giant branch stars at all metallicities for which data are available, but which of them is the dominant source of carbon depends strongly on the set of asymptotic giant branch yields adopted and the assumed initial mass function. We find an increase in carbon enrichment with increasing metallicity but a decrease in oxygen enrichment, as confirmed by observation.  相似文献   
947.
Abstract— Organic compounds in the Murchison (C2M) and Allende (CV3) carbonaceous chondrites were analyzed by photoionization time-of-flight mass spectrometry; thermal (25–850 °C) and stimulated (7 keV Ar+) desorption were combined with either nonresonant single-photon ionization using 118 nm light or resonantly enhanced multiphoton ionization (selective for aromatic compounds) using 266 nm light. Samples weighing only 1–10 mg were sufficient for sensitive quantitative analysis of aromatic compounds using thermal desorption. The detection limits for phenanthrene and pyrene using 118 nm light were determined to be 0.8 and 1.4 picomoles, respectively, and the concentrations of these compounds (including their isomers anthracene and fluoranthene) in the Murchison meteorite were determined to be 9 and 12 μg/g, respectively, in good agreement with previously published values. Thermal-desorption (–75–500 °C) field-ionization mass spectra (activated foil-type ionizing source and magnetic sector mass analyzer) of 20–40 mg of the same meteorite material were obtained to verify that the 118 nm photoionization mass spectra were not affected by photofragmentation or photodecomposition and were representative of the organic material extracted by thermal desorption. Photoionization mass spectrometry is a useful technique for studying small quantities (< 1 nanomole) of organic matter in terrestrial and extraterrestrial samples. The present study aims to provide the background and analytical methods necessary for application to new and unsolved cosmochemical problems. Some potential applications are discussed.  相似文献   
948.
Water source and lake landscape position can strongly influence the physico‐chemical characteristics of flowing waters over space and time. We examined the physico‐chemical heterogeneity in surface waters of an alpine stream‐lake network (>2600 m a.s.l.) in Switzerland. The catchment comprises two basins interspersed with 26 cirque lakes. The larger lakes in each basin are interconnected by streams that converge in a lowermost lake with an outlet stream. The north basin is primarily fed by precipitation and groundwater, whereas the south basin is fed mostly by glacial melt from rock glaciers. Surface flow of the entire channel network contracted by ~60% in early autumn, when snowmelt runoff ceased and cold temperatures reduced glacial outputs, particularly in the south basin. Average water temperatures were ~4 °C cooler in the south basin, and temperatures increased by about 4–6 °C along the longitudinal gradient within each basin. Although overall water conductivity was low (<27 µS cm?1) because of bedrock geology (ortho‐gneiss), the south basin had two times higher conductivity values than the north basin. Phosphate‐phosphorus levels were below analytical detection limits, but particulate phosphorus was about four times higher in the north basin (seasonal average: 9 µg l?1) than in the south basin (seasonal average: 2 µg l?1). Dissolved nitrogen constituents were around two times higher in the south basin than in the north basin, with highest values averaging > 300 µg l?1 (nitrite + nitrate‐nitrogen), whereas particulate nitrogen was approximately nine times greater in the north basin (seasonal average: 97 µg l?1) than in the south basin (seasonal average: 12 µg l?1). Total inorganic carbon was low (usually <0·8 mg l?1), silica was sufficient for algal growth, and particulate organic carbon was 4·5 times higher in the north basin (average: 0·9 mg l?1) than in the south basin (average: 0·2 mg l?1). North‐basin streams showed strong seasonality in turbidity, particulate‐nitrogen and ‐phosphorus, and particulate organic carbon, whereas strong seasonality in south‐basin streams was observed in conductivity and dissolved nitrogen. Lake position influenced the seasonal dynamics in stream temperatures and nutrients, particularly in the groundwater/precipitation‐fed north‐basin network. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
949.
In the eastern part of the Permo-Triassic Bowen Basin of Queensland, Australia, a transition from passive, thermal subsidence to flexural (foreland basin) subsidence is recorded within the Upper Permian stratigraphy. Two coarse-grained intervals containing deposits of mass-wasting processes occur within an otherwise siltstone-dominated succession over 1500 m thick (the Moah Creek Beds and equivalents). These intervals can be traced over at least 350 km north–south, along the structural eastern margin of the basin. The lower of the coarse-grained intervals is spectacularly exposed in the banks of the Fitzroy River, west of Rockhampton. Here, interbedded sandstones and siltstones of marine shelf origin are abruptly truncated by a mudrock succession containing evidence of slumping and contemporaneous magmatic activity. This unit passes up-section into packages of mass-flow conglomerates and diamictites, interpreted to have formed on an unstable submarine slope. The character of the mass-flow deposits, their stratigraphic position and lateral extent are interpreted in terms of destabilization of a sloping marine surface by pulsed, subsurface thrust propagation.  相似文献   
950.
We present a numerical investigation of dead, or relic, radio galaxies and the environmental impact that radio galaxy activity has on the host galaxy or galaxy cluster. We perform axisymmetric hydrodynamical calculations of light, supersonic, back-to-back jets propagating in a β -model galaxy/cluster atmosphere. We then shut down the jet activity and let the resulting structure evolve passively. The dead source undergoes an initial phase of pressure driven expansion until it achieves pressure equilibrium with its surroundings. Thereafter, buoyancy forces drive the evolution and lead to the formation of two oppositely directed plumes that float high into the galaxy/cluster atmosphere. These plumes entrain a significant amount of low entropy material from the galaxy/cluster core and lift it high into the atmosphere. An important result is that a large fraction (at least half) of the energy injected by the jet activity is thermalized in the interstellar medium (ISM)/intracluster medium (ICM) core. The whole ISM/ICM atmosphere inflates in order to regain hydrostatic equilibrium. This inflation is mediated by an approximately spherical disturbance which propagates into the atmosphere at the sound speed. The fact that such a large fraction of the injected energy is thermalized suggests that radio galaxies may have an important role in the overall energy budget of rich ISM/ICM atmospheres. In particular, they may act as a strong and highly time-dependent source of negative feedback for galaxy/cluster cooling flows.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号