首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   333篇
  免费   7篇
  国内免费   3篇
测绘学   9篇
大气科学   39篇
地球物理   80篇
地质学   81篇
海洋学   36篇
天文学   80篇
综合类   2篇
自然地理   16篇
  2021年   2篇
  2019年   6篇
  2018年   5篇
  2017年   3篇
  2016年   8篇
  2015年   4篇
  2014年   11篇
  2013年   17篇
  2012年   10篇
  2011年   22篇
  2010年   13篇
  2009年   17篇
  2008年   18篇
  2007年   13篇
  2006年   10篇
  2005年   11篇
  2004年   12篇
  2003年   7篇
  2002年   7篇
  2001年   5篇
  2000年   9篇
  1999年   7篇
  1998年   5篇
  1997年   3篇
  1996年   4篇
  1995年   4篇
  1994年   7篇
  1993年   6篇
  1992年   5篇
  1991年   4篇
  1990年   2篇
  1989年   5篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   10篇
  1983年   9篇
  1982年   2篇
  1981年   8篇
  1980年   8篇
  1979年   7篇
  1978年   6篇
  1977年   4篇
  1976年   2篇
  1975年   4篇
  1974年   2篇
  1973年   4篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有343条查询结果,搜索用时 30 毫秒
61.
Monitoring of a well‐defined septic system groundwater plume and groundwater discharging to two urban streams located in southern Ontario, Canada, provided evidence of natural attenuation of background low level (ng/L) perchlorate (ClO4?) under denitrifying conditions in the field. The septic system site at Long Point contains ClO4? from a mix of waste water, atmospheric deposition, and periodic use of fireworks, while the nitrate plume indicates active denitrification. Plume nitrate (NO3?‐N) concentrations of up to 103 mg/L declined with depth and downgradient of the tile bed due to denitrification and anammox activity, and the plume was almost completely denitrified beyond 35 m from the tile bed. The ClO4? natural attenuation occurs at the site only when NO3?‐N concentrations are <0.3 mg/L, after which ClO4? concentrations decline abruptly from 187 ± 202 to 11 ± 15 ng/L. A similar pattern between NO3?‐N and ClO4? was found in groundwater discharging to the two urban streams. These findings suggest that natural attenuation (i.e., biodegradation) of ClO4? may be commonplace in denitrified aquifers with appropriate electron donors present, and thus, should be considered as a remediation option for ClO4? contaminated groundwater.  相似文献   
62.
This study was designed to improve our understanding of, and mechanistically simulate, nitrate (NO3) dynamics in a steep 9.8 ha rural headwater catchment, including its production in soil and delivery to a stream via surface and subsurface processes. A two‐dimensional modelling approach was evaluated for (1) integrating these processes at a hillslope scale annually and within storms, (2) estimating denitrification, and (3) running virtual experiments to generate insights and hypotheses about using trees in streamside management zones (SMZs) to mitigate NO3 delivery to streams. Total flow was mathematically separated into quick‐ and slow‐flow components; the latter was routed through the HYDRUS software with a nitrogen module designed for constructed wetlands. Flow was monitored for two years. High surface‐soil NO3 concentrations started to be delivered to the stream via preferential subsurface flow within two days of the storm commencing. Groundwater NO3‐N concentrations decreased from 1.0 to less than 0.1 mg l?1 from up‐slope to down‐slope water tables, respectively, which was attributed to denitrification. Measurements were consistent with the flushing of NO3 mainly laterally from surface soil during and following each storm. The model accurately accounted for NO3 turnover, leading to the hypotheses that denitrification was a minor flux (<3 kg N ha?1) compared to uptake (98?127 kg N ha?1), and that SMZ trees would reduce denitrification if they lowered the water table. This research provides an example of the measurement and modelling of NO3 dynamics at a small‐catchment scale with high spatial and temporal resolution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
63.
Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details of dust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.  相似文献   
64.
Marine debris, particularly debris that is composed of lost or abandoned fishing gear, is recognized as a serious threat to marine life, vessels, and coral reefs. The goal of the GhostNet project is the detection of derelict nets at sea through the use of weather and ocean models, drifting buoys and satellite imagery to locate convergent areas where nets are likely to collect, followed by airborne surveys with trained observers and remote sensing instruments to spot individual derelict nets. These components of GhostNet were first tested together in the field during a 14-day marine debris survey of the Gulf of Alaska in July and August 2003. Model, buoy, and satellite data were used in flight planning. A manned aircraft survey with visible and IR cameras and a LIDAR instrument located debris in the targeted locations, including 102 individual pieces of debris of anthropogenic or terrestrial origin.  相似文献   
65.
A validation experiment, carried out in a scaled field setting, was attempted for the long electrode electrical resistivity tomography method in order to demonstrate the performance of the technique in imaging a simple buried target. The experiment was an approximately 1/17 scale mock‐up of a region encompassing a buried nuclear waste tank on the Hanford site. The target of focus was constructed by manually forming a simulated plume within the vadose zone using a tank waste simulant. The long electrode results were compared to results from conventional point electrodes on the surface and buried within the survey domain. Using a pole‐pole array, both point and long electrode imaging techniques identified the lateral extents of the pre‐formed plume with reasonable fidelity but the long electrode method was handicapped in reconstructing vertical boundaries. The pole‐dipole and dipole‐dipole arrays were also tested with the long electrode method and were shown to have the least favourable target properties, including the position of the reconstructed plume relative to the known plume and the intensity of false positive targets. The poor performance of the pole‐dipole and dipole‐dipole arrays was attributed to an inexhaustive and non‐optimal coverage of data at key electrodes, as well as an increased noise for electrode combinations with high geometric factors. However, when comparing the model resolution matrix among the different acquisition strategies, the pole‐dipole and dipole‐dipole arrays using long electrodes were shown to have significantly higher average and maximum values within the matrix than any pole‐pole array. The model resolution describes how well the inversion model resolves the subsurface. Given the model resolution performance of the pole‐dipole and dipole‐dipole arrays, it may be worth investing in tools to understand the optimum subset of randomly distributed electrode pairs to produce maximum performance from the inversion model.  相似文献   
66.
Mesopause region temperature measurements made with a sodium resonance lidar show two unexpected features: (1) Strong positive temperature gradients are often associated with strong gradients in the sodium concentration and (2) positive temperature gradients are generally much stronger than negative ones. Although the structures we see frequently appear to be associated with gravity waves or tides, the asymmetrical temperature oscillations cannot be explained as the result of simple wave propagation. We suggest that strong positive temperature gradients correspond to regions of high atmospheric stability, where eddy diffusion is inhibited, permitting the build-up of strong gradients in temperature and minor constituent mixing ratio.  相似文献   
67.
A closed-cell marine stratocumulus case during the Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) aircraft field campaign is selected to examine the heterogeneities of cloud and drizzle microphysical properties and the aerosol-cloud-precipitation interactions. The spatial and vertical variabilities of cloud and drizzle microphysics are found in two different sets of flight legs: Leg-1 and Leg-2, which are parallel and perpendicular to the cloud propagation, respectively. The cloud along Leg-2 was close to adiabatic, where cloud-droplet effective radius and liquid water content linearly increase from cloud base to cloud top with less drizzle. The cloud along Leg-1 was sub-adiabatic with lower cloud-droplet number concentration and larger cloud-droplet effective, but higher drizzle droplet number concentration, larger drizzle droplet median diameter and drizzle liquid water content. The heavier drizzle frequency and intensity on Leg-1 were enhanced by the collision-coalescence processes within cloud due to strong turbulence. The sub-cloud precipitation rate on Leg-1 was significantly higher than that along Leg-2. As a result, the sub-cloud accumulation mode aerosols and CCN on Leg-1 were depleted, but the coarse model aerosols increased. This further leads to a counter-intuitive phenomenon that the CCN is less than cloud-droplet number concentration for Leg-1. The average CCN loss rates are ?3.89 \begin{document}$\mathrm{c}{\mathrm{m}}^{-3}\;{\mathrm{h}}^{-1}$\end{document} and ?0.77 \begin{document}$\mathrm{c}{\mathrm{m}}^{-3}\;{\mathrm{h}}^{-1}$\end{document} on Leg-1 and Leg-2, respectively. The cloud and drizzle heterogeneities inside the same stratocumulus can significantly alter the sub-cloud aerosols and CCN budget. Hence it should be treated with caution in the aircraft assessment of aerosol-cloud-precipitation interactions.  相似文献   
68.
Co-management institutional arrangements have an important role in creating conditions for social learning and adaptation in a rapidly changing Arctic environment, although how that works in practice has not been clearly articulated. This paper draws on three co-management cases from the Canadian Arctic to examine the role of knowledge co-production as an institutional trigger or mechanism to enable learning and adapting. Experience with knowledge co-production across the three cases is variable but outcomes illustrate how co-management actors are learning to learn through uncertainty and environmental change, or learning to be adaptive. Policy implications of this analysis are highlighted and include the importance of a long-term commitment to institution building, an enabling policy environment to sustain difficult social processes associated with knowledge co-production, and the value of diverse modes of communication, deliberation and social interaction.  相似文献   
69.
Benthic nitrogen (N) cycling was investigated at six stations along a transect traversing the Peruvian oxygen minimum zone (OMZ) at 11°S. An extensive dataset including porewater concentration profiles and in situ benthic fluxes of nitrate (NO3), nitrite (NO2) and ammonium (NH4+) was used to constrain a 1-D reaction-transport model designed to simulate and interpret the measured data at each station. Simulated rates of nitrification, denitrification, anammox and dissimilatory nitrate reduction to ammonium (DNRA) by filamentous large sulfur bacteria (e.g. Beggiatoa and Thioploca) were highly variable throughout the OMZ yet clear trends were discernible. On the shelf and upper slope (80-260 m water depth) where extensive areas of bacterial mats were present, DNRA dominated total N turnover (?2.9 mmol N m−2 d−1) and accounted for ?65% of NO3 + NO2 uptake by the sediments from the bottom water. Nonetheless, these sediments did not represent a major sink for dissolved inorganic nitrogen (DIN = NO3 + NO2 + NH4+) since DNRA reduces NO3 and, potentially NO2, to NH4+. Consequently, the shelf and upper slope sediments were recycling sites for DIN due to relatively low rates of denitrification and high rates of ammonium release from DNRA and ammonification of organic matter. This finding contrasts with the current opinion that sediments underlying OMZs are a strong sink for DIN. Only at greater water depths (300-1000 m) did the sediments become a net sink for DIN. Here, denitrification was the major process (?2 mmol N m−2 d−1) and removed 55-73% of NO3 and NO2 taken up by the sediments, with DNRA and anammox accounting for the remaining fraction. Anammox was of minor importance on the shelf and upper slope yet contributed up to 62% to total N2 production at the 1000 m station. The results indicate that the partitioning of oxidized N (NO3, NO2) into DNRA or denitrification is a key factor determining the role of marine sediments as DIN sinks or recycling sites. Consequently, high measured benthic uptake rates of oxidized N within OMZs do not necessarily indicate a loss of fixed N from the marine environment.  相似文献   
70.
Vegetation changes associated with climate shifts and anthropogenic disturbance can have major impacts on biogeochemical cycling and soils. Much of the Great Basin, U.S. is currently dominated by sagebrush (Artemisia tridentate (Rydb.) Boivin) ecosystems. Sagebrush ecosystems are increasingly influenced by pinyon (Pinus monophylla Torr. & Frém and Pinus edulis Engelm.) and juniper (Juniperus osteosperma Torr. and Juniperus occidentalis Hook.) expansion. Some scientists and policy makers believe that increasing woodland cover in the intermountain western U.S. offers the possibility of increased organic carbon (OC) storage on the landscape; however, little is currently known about the distribution of OC on these landscapes, or the role that nitrogen (N) plays in OC retention. We quantified the relationship between tree cover, belowground OC, and total below ground N in expansion woodlands at 13 sites in Utah, Oregon, Idaho, California, and Nevada, USA. One hundred and twenty nine soil cores were taken using a mechanically driven diamond tipped core drill to a depth of 90 cm. Soil, coarse fragments, and coarse roots were analyzed for OC and total N. Woodland expansion influenced the vertical distribution of root OC by increasing 15-30 cm root OC by 2.6 Mg ha−1 and root N by 0.04 Mg ha−1. Root OC and N increased through the entire profile by 3.8 and 0.06 Mg ha−1 respectively. Woodland expansion influenced the vertical distribution of soil OC by increasing surface soil (0-15 cm) OC by 2.2 Mg ha−1. Woodland expansion also caused a 1.3 Mg ha−1 decrease in coarse fragment associated OC from 75-90 cm. Our data suggests that woodland expansion into sagebrush ecosystems has limited potential to store additional belowground OC, and must be weighed against the risk of increased wildfire and exotic grass invasion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号