首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
测绘学   1篇
大气科学   1篇
地球物理   1篇
地质学   12篇
天文学   3篇
自然地理   5篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1978年   1篇
  1969年   1篇
排序方式: 共有23条查询结果,搜索用时 62 毫秒
21.
22.
Isolated carbonate platforms occur throughout geological history, and commonly exhibit considerable spatial variability. To evaluate the controls on the nature of sediment accumulation across the expansive, shallow platform tops, this study systematically compares and contrasts patterns in surface sediments from several shallow (<10 m) Holocene Bahamian examples. Remote‐sensing data, field observations, petrographic characterization and quantitative grain‐size analyses reveal the spatial patterns of sediment accumulation on Crooked–Acklins Platform and the Berry Islands Bank. Integration of these data with synoptic observations of waves, tides and currents, along with regional geochemical data, provides a means to explore the factors that influence platform‐scale sedimentary patterns. These data illustrate that the platform interiors of both Crooked–Acklins Platform and Berry Islands Bank are blanketed with medium to coarse sand size sediment. Peloids are most common in the interior of Crooked–Acklins Platform, whereas the Berry Islands Bank includes more abundant composite grains. In both areas, very little mud is present, with surface sediments averaging <2% mud. Comparison of these results with published data from Little Bahama Bank, Great Bahama Bank and Caicos Platform suggest that, contrary to previous interpretations, the presence of open margins and/or brisk winds are not necessary for the occurrence of a platform top with little mud. Although the muddy sediment fraction of the interior can be suspended by elevated wave energy, wind‐generated current speeds in protected platform interiors are relatively low. Instead, in parts of the platform interiors, transport and winnowing of fines is enhanced greatly by tidal currents, which carry suspended sediments off the shallow platforms, even if shielded by islands. Beyond physical influences, however, regional geochemical compilations suggest that the Bahamian tides supply highly supersaturated waters rich in dissolved oxygen to these platform interiors. This exchange is interpreted to facilitate favourable conditions for calcium carbonate precipitation in the form of ooids, marine cements and hardened peloids across vast expanses of the platform interiors. Such fundamental controls on Holocene platform‐scale sediment dynamics are likely to have influenced carbonate systems through the geological record.  相似文献   
23.
The south-eastern United States and Gulf Coast of Mexico is physiographically diverse, although dominated by a broad coastal plain. Much of the region has a humid, warm temperate climate with little seasonality in precipitation but strong seasonality in runoff owing to high rates of summer evapotranspiration. The climate of southern Florida and eastern Mexico is subtropical with a distinct summer wet season and winter dry season. Regional climate models suggest that climate change resulting from a doubling of the pre-industrial levels of atmospheric CO2 may increase annual air temperatures by 3–4°C. Changes in precipitation are highly uncertain, but the most probable scenario shows higher levels over all but the northern, interior portions of the region, with increases primarily occurring in summer and occurring as more intense or clustered storms. Despite the increases in precipitation, runoff is likely to decline over much of the region owing to increases in evapotranspiration exceeding increases in precipitation. Only in Florida and the Gulf Coast areas of the US and Mexico are precipitation increases likely to exceed evapotranspiration increases, producing an increase in runoff. However, increases in storm intensity and clustering are likely to result in more extreme hydrographs, with larger peaks in flow but lower baseflows and longer periods of drought. The ecological effects of climate change on freshwaters of the region include: (1) a general increase in rates of primary production, organic matter decomposition and nutrient cycling as a result of higher temperatures and longer growing seasons: (2) reduction in habitat for cool water species, particularly fish and macroinvertebrates in Appalachian streams; (3) reduction in water quality and in suitable habitat in summer owing to lower baseflows and intensification of the temperature–dissolved oxygen squeeze in many rivers and reservoirs; (4) reduction in organic matter storage and loss of organisms during more intense flushing events in some streams and wetlands; (5) shorter periods of inundation of riparian wetlands and greater drying of wetland soils, particularly in northern and inland areas; (6) expansion of subtropical species northwards, including several non-native nuisance species currently confined to southern Florida; (7) expansion of wetlands in Florida and coastal Mexico, but increase in eutrophication of Florida lakes as a result of greater runoff from urban and agricultural areas; and (8) changes in the flushing rate of estuaries that would alter their salinity regimes, stratification and water quality as well as influence productivity in the Gulf of Mexico. Many of the expected climate change effects will exacerbate current anthropogenic stresses on the region's freshwater systems, including increasing demands for water, increasing waste heat loadings and land use changes that alter the quantity and quality of runoff to streams and reservoirs. Research is needed especially in several critical areas: long-term monitoring of key hydrological, chemical and biological properties (particularly water balances in small, forested catchments and temperature-sensitive species); experimental studies of the effects of warming on organisms and ecosystem processes under realistic conditions (e.g. in situ heating experiments); studies of the effects of natural hydrological variation on biological communities; and assessment of the effects of water management activities on organisms and ecosystem processes, including development and testing of management and restoration strategies designed to counteract changes in climate. © 1997 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号