首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38943篇
  免费   3134篇
  国内免费   4754篇
测绘学   2556篇
大气科学   4856篇
地球物理   8162篇
地质学   19372篇
海洋学   2975篇
天文学   2216篇
综合类   3557篇
自然地理   3137篇
  2024年   87篇
  2023年   302篇
  2022年   849篇
  2021年   963篇
  2020年   822篇
  2019年   916篇
  2018年   5555篇
  2017年   4705篇
  2016年   3383篇
  2015年   1042篇
  2014年   1096篇
  2013年   1022篇
  2012年   1932篇
  2011年   3644篇
  2010年   2932篇
  2009年   3137篇
  2008年   2629篇
  2007年   2984篇
  2006年   643篇
  2005年   737篇
  2004年   805篇
  2003年   778篇
  2002年   606篇
  2001年   450篇
  2000年   488篇
  1999年   630篇
  1998年   531篇
  1997年   467篇
  1996年   466篇
  1995年   363篇
  1994年   358篇
  1993年   302篇
  1992年   275篇
  1991年   180篇
  1990年   151篇
  1989年   125篇
  1988年   97篇
  1987年   71篇
  1986年   56篇
  1985年   44篇
  1984年   32篇
  1983年   28篇
  1982年   25篇
  1981年   32篇
  1980年   28篇
  1979年   13篇
  1978年   9篇
  1977年   5篇
  1976年   9篇
  1958年   9篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
971.
972.
The effects of low- to high-angle (>30°) normal faults on sedimentary architectural units in the Eocene Wenchang Formation, Enping Sag, Pearl River Mouth Basin (PRMB), South China Sea were investigated utilising a high-quality 3D seismic data set and restored paleogeomorphology. It has been shown that sequence stratigraphic units and sedimentary architecture are significantly controlled by the low- to high-angle normal faults. The Wenchang Formation, a second-order sequence, can be subdivided into two para-second-sequences (the Lower and Upper Wenchang sequences, E2WL and E2WU) and seven third-order sequences (from base to top: SQ1~SQ7). The low-angle fault confined sequence architecture of the Wenchang Formation is mainly characterised by lateral stacking with the ratio of the vertical subsidence (V) to horizontal slip (H) being reduced from 1/2 for E2WL to 1/6 for E2WU. In contrast, the high-angle fault confined sequence is characterised by vertical stacking with the ratio of V/H close to 1 for sequences SQ1 to SQ7. In the 3D seismic area, the features of sediment-dispersal pattern were interpreted based on an integrated analysis of paleogeomorphology, seismic reflection characteristics, stratal thickness distribution and multiple attribute clustering. The results show that the large-scale fan delta, belt-shape lacustrine deposit and bird-foot braided delta systems mainly developed in the low-angle fault confined sequences, whereas small-scale fan delta, rhombus-shaped lacustrine deposit and lobe-shaped braided delta systems inherited tectono-sedimentary architectures in the high-angle fault confined sequences.  相似文献   
973.
The Gorgon Platform is located on the southeastern edge of the Exmouth Plateau in the North Carnarvon Basin, North West Shelf, Australia. A structural analysis using three-dimensional (3D) seismic data has revealed four major sets of extensional faults, namely, (1) the Exmouth Plateau extensional fault system, (2) the basin bounding fault system (Exmouth Plateau–Gorgon Platform Boundary Fault), (3) an intra-rift fault system in the graben between the Exmouth Plateau and the Gorgon Platform and (4) an intra-rift fault system within the graben between the Exmouth Plateau and the Exmouth Sub-basin. Fault throw-length analyses imply that the initial fault segments, which formed the Exmouth Plateau–Gorgon Platform Boundary Fault (EG Boundary Fault), were subsequently connected vertically and laterally by both soft- and hard-linked structures. These major extensional fault systems were controlled by three different extensional events during the Early and Middle Jurassic, Late Jurassic and Early Cretaceous, and illustrate the strong role of structural inheritance in determining fault orientation and linkage. The Lower and Middle Jurassic and Upper Jurassic to Lower Cretaceous syn-kinematic sequences are separated by unconformities.  相似文献   
974.
The possible mechanism behind the variability in the dipole pattern of boreal winter precipitation over East Asia is analyzed in this study. The results show that the SST anomalies(SSTAs) over the South Pacific Ocean(SPO) in boreal autumn are closely related to the variability in the dipole pattern of boreal winter precipitation over East Asia. The physical link between the boreal autumn SPO SSTAs and the boreal winter East Asian precipitation dipole pattern is shown to mainly be the seasonal persistence of the SPO SSTAs themselves. The seasonal persistence of the SPO SSTAs can memorize and transport the signal of the boreal autumn SSTAs to the following winter, and then stimulates a meridional teleconnection pattern from the SH to the NH, resulting in a meridional dipole pattern of atmospheric circulation over East Asia in boreal winter. As a major influencing factor, this dipole pattern of the atmospheric circulation can finally lead to the anomalous precipitation dipole pattern over East Asia in boreal winter. These observed physical processes are further confirmed in this study through numerical simulation. The evidence from this study, showing the impact of the SPO SSTAs in boreal autumn,not only deepens our understanding of the variability in East Asian boreal winter precipitation, but also provides a potentially useful predictor for precipitation in the region.  相似文献   
975.
Based on 25-year(1987–2011) tropical cyclone(TC) best track data, a statistical study was carried out to investigate the basic features of upper-tropospheric TC–environment interactions over the western North Pacific. Interaction was defined as the absolute value of eddy momentum flux convergence(EFC) exceeding 10 m s~(-1)d~(-1). Based on this definition, it was found that 18% of all six-hourly TC samples experienced interaction. Extreme interaction cases showed that EFC can reach~120 m s~(-1)d~(-1) during the extratropical-cyclone(EC) stage, an order of magnitude larger than reported in previous studies.Composite analysis showed that positive interactions are characterized by a double-jet flow pattern, rather than the traditional trough pattern, because it is the jets that bring in large EFC from the upper-level environment to the TC center. The role of the outflow jet is also enhanced by relatively low inertial stability, as compared to the inflow jet. Among several environmental factors, it was found that extremely large EFC is usually accompanied by high inertial stability, low SST and strong vertical wind shear(VWS). Thus, the positive effect of EFC is cancelled by their negative effects. Only those samples during the EC stage, whose intensities were less dependent on VWS and the underlying SST, could survive in extremely large EFC environments, or even re-intensify. For classical TCs(not in the EC stage), it was found that environments with a moderate EFC value generally below ~25 m s~(-1)d~(-1) are more favorable for a TC's intensification than those with extremely large EFC.  相似文献   
976.
正Forty years ago,Klaus Wyrtki(1975)of University of Hawaii discovered that El Nino warming off South America is not a result of local wind change but a response to the relaxed equatorial trade winds some 10 000 km away near the international dateline.The Kelvin wave mechanism was quickly verified from wind-forced ocean model simulations.Consequent  相似文献   
977.
The mechanisms behind the seasonal deepening of the mixed layer(ML) in the subtropical Southeast Pacific were investigated using the monthly Argo data from 2004 to 2012. The region with a deep ML(more than 175 m) was found in the region of(22?–30?S, 105?–90?W), reaching its maximum depth(~200 m) near(27?–28?S, 100?W) in September. The relative importance of horizontal density advection in determining the maximum ML location is discussed qualitatively. Downward Ekman pumping is key to determining the eastern boundary of the deep ML region. In addition, zonal density advection by the subtropical countercurrent(STCC) in the subtropical Southwest Pacific determines its western boundary, by carrying lighter water to strengthen the stratification and form a "shallow tongue" of ML depth to block the westward extension of the deep ML in the STCC region. The temperature advection by the STCC is the main source for large heat loss from the subtropical Southwest Pacific. Finally, the combined effect of net surface heat flux and meridional density advection by the subtropical gyre determines the northern and southern boundaries of the deep ML region: the ocean heat loss at the surface gradually increases from 22?S to 35?S, while the meridional density advection by the subtropical gyre strengthens the stratification south of the maximum ML depth and weakens the stratification to the north. The freshwater flux contribution to deepening the ML during austral winter is limited. The results are useful for understanding the role of ocean dynamics in the ML formation in the subtropical Southeast Pacific.  相似文献   
978.
The spatial distribution of trace gases exhibit large spatial heterogeneity over the Indian region with an elevated pollution loading over densely populated Gangetic Plains (IGP). The contending role and importance of anthropogenic emissions and meteorology in deciding the trace gases level and distribution over Indian region, however, is poorly investigated. In this paper, we use an online regional chemistry transport model (WRF/Chem) to simulate the spatial distribution of trace gases over Indian region during one representative month of only three meteorological seasons namely winter, spring/summer and monsoon. The base simulation, using anthropogenic emissions from SEAC4RS inventory, is used to simulate the general meteorological conditions and the realistic spatial distribution of trace gases. A sensitivity simulation is conducted after removing the spatial heterogeneity in the anthropogenic emissions, i.e., with spatially uniform emissions to decouple the role of anthropogenic emissions and meteorology and their role in controlling the distribution of trace gases over India. The concentration levels of Ozone, CO, SO2 and NO2 were found to be lower over IGP when the emissions are uniform over India. A comparison of the base run with the sensitivity run highlights that meteorology plays a dominant role in controlling the spatial distribution of relatively longer-lived species like CO and secondary species like Ozone while short-lived species like NOX and SO2 are predominantly controlled by the spatial variability in anthropogenic emissions over the Indian region.  相似文献   
979.
The northwestern Pacific(NWP) is a fog-prone area, especially the ocean east of the Kuril Islands. The present study analyzes how the Pacific–Japan(PJ) teleconnection pattern influences July sea fog in the fog-prone area using independent datasets. The covariation between the PJ index and sea fog frequency(SFF) index in July indicates a close correlation, with a coefficient of 0.62 exceeding the 99% confidence level. Composite analysis based on the PJ index, a case study, and model analysis based on GFDL-ESM2 M, show that in high PJ index years the convection over the east of the Philippines strengthens and then triggers a Rossby wave, which propagates northward to maintain an anticyclonic anomaly in the midlatitudes,indicating a northeastward shift of the NWP subtropical high. The anticyclonic anomaly facilitates the formation of relatively stable atmospheric stratification or even an inversion layer in the lower level of the troposphere, and strengthens the horizontal southerly moisture transportation from the tropical–subtropical oceans to the fog-prone area. On the other hand, a greater meridional SST gradient over the cold flank of the Kuroshio Extension, due to ocean downwelling, is produced by the anticyclonic wind stress anomaly. Both of these two aspects are favorable for the warm and humid air to cool, condense, and form fog droplets, when air masses cross the SST front. The opposite circumstances occur in low PJ index years, which are not conducive to the formation of sea fog. Finally, a multi-model ensemble mean projection reveals a prominent downward trend of the PJ index after the 2030 s, implying a possible decline of the SFF in this period.  相似文献   
980.
Based on the dynamic framework of WRF and Morrison 2-moment explicit cloud scheme, a salt-seeding scheme was developed and used to simulate the dissipation of a warm fog event during 6–7 November 2009 in the Beijing and Tianjin area. The seeding effect and its physical mechanism were studied. The results indicate that when seeding fog with salt particles sized 80 μm and at a quantity of 6 gm~(-2) at the fog top, the seeding effect near the ground surface layer is negative in the beginning period, and then a positive seeding effect begins to appear at 18 min, with the best effect appearing at 21 min after seeding operation. The positive effect can last about 35 min. The microphysical mechanism of the warm fog dissipation is because of the evaporation due to the water vapor condensation on the salt particles and coalescence with salt particles.The process of fog water coalescence with salt particles contributed mostly to this warm fog dissipation. Furthermore, two series of sensitivity experiments were performed to study the seeding effect under different seeding amounts and salt particles sizes. The results show that seeding fog with salt particles sized of 80 μm can have the best seeding effect, and the seeding effect is negative when the salt particle size is less than 10 μm. For salt particles sized 80 μm, the best seeding effect, with corresponding visibility of 380 m, can be achieved when the seeding amount is 30 g m~(-2).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号