首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29882篇
  免费   669篇
  国内免费   354篇
测绘学   788篇
大气科学   2400篇
地球物理   6725篇
地质学   10914篇
海洋学   2243篇
天文学   5923篇
综合类   119篇
自然地理   1793篇
  2021年   185篇
  2020年   194篇
  2018年   451篇
  2017年   418篇
  2016年   642篇
  2015年   454篇
  2014年   658篇
  2013年   1460篇
  2012年   738篇
  2011年   962篇
  2010年   878篇
  2009年   1143篇
  2008年   1016篇
  2007年   945篇
  2006年   947篇
  2005年   836篇
  2004年   839篇
  2003年   780篇
  2002年   799篇
  2001年   681篇
  2000年   670篇
  1999年   646篇
  1998年   634篇
  1997年   617篇
  1996年   533篇
  1995年   515篇
  1994年   503篇
  1993年   458篇
  1992年   410篇
  1991年   372篇
  1990年   418篇
  1989年   337篇
  1988年   363篇
  1987年   416篇
  1986年   359篇
  1985年   520篇
  1984年   563篇
  1983年   581篇
  1982年   454篇
  1981年   456篇
  1980年   478篇
  1979年   423篇
  1978年   435篇
  1977年   386篇
  1976年   403篇
  1975年   377篇
  1974年   413篇
  1973年   393篇
  1972年   259篇
  1971年   211篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Fluid flow in fractured rock is an increasingly central issue in recovering water and hydrocarbon supplies and geothermal energy, in predicting flow of pollutants underground, in engineering structures, and in understanding large-scale crustal behaviour. Conventional wisdom assumes that fluids prefer to flow along fractures oriented parallel or nearly parallel to modern-day maximum horizontal compressive stress, or SHmax. The reasoning is that these fractures have the lowest normal stresses across them and therefore provide the least resistance to flow. For example, this view governs how geophysicists design and interpret seismic experiments to probe fracture fluid pathways in the deep subsurface. Contrary to these widely held views, here we use core, stress measurement, and fluid flow data to show that SHmax does not necessarily coincide with the direction of open natural fractures in the subsurface (>3 km depth). Consequently, in situ stress direction cannot be considered to predict or control the direction of maximum permeability in rock. Where effective stress is compressive and fractures are expected to be closed, chemical alteration dictates location of open conduits, either preserving or destroying fracture flow pathways no matter their orientation.  相似文献   
992.
— Earthquake fault systems are now thought to be an example of a complex nonlinear system (Bak, et al., 1987; Rundle and Klein, 1995). The spatial and temporal complexity of this system translates into a similar complexity in the surface expression of the underlying physics, including deformation and seismicity. Here we show that a new pattern dynamic methodology can be used to define a unique, finite set of deformation patterns for the Southern California Integrated GPS Network (SCIGN). Similar in nature to the empirical orthogonal functions historically employed in the analysis of atmospheric and oceanographic phenomena (Preisendorfer, 1988), the method derives the eigenvalues and eigenstates from the diagonalization of the correlation matrix using a Karhunen-Loeve expansion (KLE) (Fukunaga, 1970; Rundle et al., 2000; Tiampo et al., 2002). This KLE technique may be used to determine the important modes in both time and space for the southern California GPS data, modes that potentially include such time-dependent signals as plate velocities, viscoelasticity, and seasonal effects. Here we attempt to characterize several of the seasonal vertical signals on various spatial scales. These, in turn, can be used to better model geophysical signals of interest such as coseismic deformation, viscoelastic effects, and creep, as well as provide data assimilation and model verification for large-scale numerical simulations of southern California.  相似文献   
993.
994.
Geomorphology interacts with surface‐ and ground‐water hydrology across multiple spatial scales. Nonetheless, hydrologic and hydrogeologic models are most commonly implemented at a single spatial scale. Using an existing hydrogeologic computer model, we implemented a simple hierarchical approach to modeling surface‐ and ground‐water hydrology in a complex geomorphic setting. We parameterized the model to simulate ground‐ and surface‐water ?ow patterns through a hierarchical, three‐dimensional, quantitative representation of an anabranched montane alluvial ?ood plain (the Nyack Flood Plain, Middle Fork Flathead River, Montana, USA). Comparison of model results to ?eld data showed that the model provided reasonable representations of spatial patterns of aquifer recharge and discharge, temporal patterns of ?ood‐water storage on the ?ood plain, and rates of ground‐water movement from the main river channel into a large lateral spring channel on the ?ood plain, and water table elevation in the alluvial aquifer. These results suggest that a hierarchical approach to modeling ground‐ and surface‐water hydrology can reproduce realistic patterns of surface‐ and ground‐water ?ux on alluvial ?ood plains, and therefore should provide an excellent ‘quantitative laboratory’ for studying complex interactions between geomorphology and hydrology at and across multiple spatial scales. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
995.
Visual method for spectral band selection   总被引:1,自引:0,他引:1  
We present a new method for performing band selection experiments with spectral data. This method allows for the visual inspection and assessment of the experiment results, and includes a statistical significance test. The method follows a standard feature selection approach in which a multivariate distance measure is used as a figure of merit in a search-optimization procedure. For this letter, we have chosen the Jeffries-Matusita distance between each sample and its immediate background. The band selection methodology uses either an exhaustive search over all possible combinations of 1-4 bands or sequential forward selection. To analyze the band selection results, we count the number of times that each band is selected as a member of the best set by the protocol, and we plot the results as a band frequency histogram. This allows us to visually discern spectral patterns that are not evident otherwise, and thus better assess the utility of each spectral band. We can compute band frequency histograms over individual classes of samples or over groups of classes. In addition, we can compute a significance statistic that gives us the probability that a given histogram is not the result of random band selection outcomes.  相似文献   
996.
997.
Significant coherence among time series of environmental and biological production variables suggested mechanistic pathways through which climate contributed to the downward shift in estuarine production (biomass) in northern San Francisco Bay estuary, 1975–1993. Climate directly and indirectly affected physical processes in the estuary through precipitation and its subsequent impact on streamflow and physical variables affected by streamflow. Climate also directly influenced air temperature and wind velocity. The influence if climate was evaluated through a climate index based on sea level pressure. A shift in this climate index in the early 1980s coincided with changes in many environmental variables including water transparency, water temperature, wind velocity, and rainfall. These physical changes were accompanied by a decrease in diatom, total zooplankton, andNeomysis mercedis carbon at the base of the food web throughout the estuary. Box-Jenkins time series coherence analysis was used to quantify associations among these physical, chemical, and biological time series for nine regions of the estuary. These associations were used to develop a conceptual model of mechanistic pathways that directly linked food web carbon production to climate. Strong coherence among diatom, zooplankton, andN. mercedis carbon time series suggested climate also had an indirect impact on food web production through trophic cascade. Differing mechanistic pathways among the nine regions of the estuary suggested climate was an important contributor to the spatial variability in total food web production and trophic structure.  相似文献   
998.
Oxygen isotope fractionations have been determined between magnetite and water from 300 to 800°C and pressures between 10 and 215MPa. We selected three reaction pathways to investigate fractionation: (a) reaction of fine-grained magnetite with dilute aqueous NaCl solutions; (b) reduction of fine-grained hematite through reaction with dilute acetic acid; and (c) oxidation of fine iron power in either pure water or dilute NaCl solutions. Effective use of acetic acid was limited to temperatures up to about 400°C, whereas oxide-solution isotope exchange experiments were conducted at all temperatures. Equilibrium 18O/16O fractionation factors were calculated from the oxide-water experiments by means of the partial isotope exchange method, where generally four isotopically different waters were used at any given temperature. Each run product was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and on a limited basis, high-resolution transmission electron microscopy (HRTEM) and Mössbauer spectroscopy. Results from the microscopic examinations indicate the formation of well-crystallized octahedra and dodecahedra of magnetite where the extent of crystallization, grain size, and grain habit depend on the initial starting material, P, T, solution composition, and duration of the run.The greatest amount of oxygen isotope exchange (∼90% or greater) was observed in experiments where magnetite either recrystallized in the presence of 0.5 m NaCl from 500 to 800°C or formed from hematite reacted with 0.5 m acetic acid at 300, 350 and 400°C. Fractionation factors (103 ln αmt-H2O) determined from these partial exchange experiments exhibit a steep decrease (to more negative values) with decreasing temperature down to about 500°C, followed by shallower slope. A least-squares regression model of these partial exchange data, which accounts for analytical errors and errors generated by mass balance calculations, gives the following expression for fractionation that exhibits no minimum: 1000lnαlmt-lw=−8.984(±0.3803)x+3.302(±0.377)x2—0.426(±0.092)x3 with an R2 = 0.99 for 300 ≤ T≤ 800°C (x = 106/T2). The Fe oxidation results also exhibit this type of temperature dependence but shifted to slightly more negative 103 ln α values; there is the suggestion that a kinetic isotope effect may contribute to these fractionations. A theoretical assessment of oxygen isotope fractionation using β-factors derived from heat capacity and Mössbauer temperature (second-order Doppler) shift measurements combined with known β-factors for pure water yield fractionations that are somewhat more negative compared to those determined experimentally. This deviation may be due to the combined solute effects of dissolved magnetite plus NaCl (aq), as well as an underestimation of βmt at low temperatures. The new magnetite-water experimental fractionations agree reasonably well with results reported from other experimental studies for temperatures ≥ 500°C, but differ significantly with estimates based on quasi-theoretical and empirical approaches. Calcite-magnetite and quartz-magnetite fractionation factors estimated from the combination of magnetite β’s calculated in this study with those for calcite and quartz reported by Clayton and Kieffer (1991) agree very closely with experimentally determined mineral-pair fractionations.  相似文献   
999.
The occurrence and propagation of abrupt climate change between the high and low-latitudes has become an important focus of paleoclimatic and paleoceanographic research. The causes of abrupt change have significant implications for understanding future manifestations of similar forcings under late Holocene (‘Anthropocene’) boundary conditions. Of particular interest are signals indicative of sub-millennial scale climate change in the sub-tropics of similar magnitude and frequency to those recorded in Greenland ice cores. Earlier research in the Arabian Sea has highlighted the sensitivity of sedimentary organic carbon and nitrogen isotope measurements for recording the state of the SW monsoon and associated Arabian Sea Oxygen Minimum Zone. In this study, we exploit the unprecedented fidelity of the sedimentary δ15N record to identify a 20 cm interval at ODP Site 723 containing a stadial/inter-stadial interval between 43-42 Kyr BP. We employ sedimentary nitrogen isotopes, chlorin pigment and alkenone abundances, major and minor element analyses of highly-resolved (2 mm ≈ 10 yr) samples across this interval to compare a comprehensive, multi-proxy data set to understand (a) the processes contributing to the δ15N signal in the longer records of denitrification; and (b) the associated climatic events, especially the relative intensity of summer and winter monsoons at these times. A lack of evidence for bioturbation in excess of our 2 mm sampling resolution facilitates decadal-scale oceanographic and climatic reconstructions. Using a four-component flux-dilution model, we show that the deposition of carbonate decreased in parallel with an increase in Total Organic Matter flux from stadial to inter-stadial time. This interval is also marked by a significant drop in lithogenic (dust) accumulation, analogous to a similar decrease noted during deglaciation in the Western Arabian Sea. Combined with alkenone U37K′-derived estimates for sea surface temperature (SST), we conclude that the climatological shift from stadial to inter-stadial conditions at low latitudes was characterized by repeated switches in mean monsoon state approximately every 200 yr. The winter monsoon was the dominant mode during maximum stadial conditions; conversely the summer monsoon was dominant during maximum interstadial-like conditions. However, each interval was separated by a distinct ‘inter-monsoon’ mode, indicated by a higher continental dust flux but warmer SST. Proxy records for changing bottom-water oxygenation show near-identical results down to the mm-scale, but hint at increased export production leading the onset of anoxia during the stadial/inter-stadial transition. The coherence of all sedimentary signals depicts a wholesale reorganization of the Arabian Sea climate and marine ecosystem over approximately 200 years, a period that may be associated with monsoon modulation by small oscillations in solar irradiance.  相似文献   
1000.
Pamukkale thermal waters (35 °C), exhibiting calcium-bicarbonate-sulfate composition and high carbon dioxide concentration, are of a predominantly meteoric origin. The meteoric fluid, circulating through faults and fractures, is heated by magmatic intrusions at great depth, and ascends from deep reservoirs to the surface. Mixing with relatively cold groundwater in the near surface zone promotes different saturation conditions with respect to calcium carbonate that later precipitates at depth and/or the surface. Dissolution-deposition processes of calcium carbonate both at surface and depth environments may help to reconstruct past climate direction in the field. During wet climate conditions a high-rate of calcium carbonate accumulation would be expected to occur at the surface because thermal fluid would be under-saturated with respect to calcium carbonate at depth because of a relatively higher mixing ratio with cold groundwater. During dry climate conditions the thermal fluid would be super-saturated at depth because of the highly acidic environment. Hydrometeorological studies reveal that the annual precipitation at the Pamukkale hydrothermal field tends to decrease with time. This climatic change in the area was also detected from geological records. While humid climate conditions prevailed during the late Quaternary, the area has recently been affected by arid/semi-arid climate conditions, followed by some episodic transitions. This study has shown how the system has possibly reacted to different climate conditions since antiquity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号