首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   3篇
  国内免费   1篇
测绘学   3篇
大气科学   5篇
地球物理   2篇
地质学   14篇
自然地理   2篇
  2019年   1篇
  2018年   3篇
  2017年   7篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   5篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2005年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
11.
Cellular automata (CA) and artificial neural networks (ANNs) have been used by researchers over the last three decades to simulate land-use change (LUC). While conventional CA and ANN models assign a cell to only one land-use class, in reality, a cell may belong to several land-use classes simultaneously. The recently developed multi-label (ML) concept overcomes this limitation in land change science. Although the ML concept is a new paradigm with nonexclusive classes and has shown considerable merit in several applications, few studies in land change science have applied it. In addition, determining transition rules in conventional CA is difficult when the number of drivers is large. Since CA has been shown as a potential model to consider neighborhood effects and ANN has been shown effective in determining CA transition rules, we integrated both CA with an ANN model to overcome limitations of each tool. In this study, we specifically extended the ANN-based Land Transformation Model (LTM) with both a CA-based model and the ML concept to create an integrated ML-CA-LTM modeling framework. We also compared, using standard evaluation measures, differences between the proposed integrated model with a conventional CA-based LTM model (called the ml-CA-LTM). Parameterization was made using a learning and testing procedure common in machine learning. Results showed that the modified LUC model, ML-CA-LTM, produced consistently better goodness of fit calibration values compared to the ml-CA-LTM. The outcome of this modified model can be used by managers and decision makers for improved urban planning.  相似文献   
12.
There is evidence that the observed changes in winter North Atlantic Oscillation (NAO) drive a significant portion of Atlantic Multi Decadal Variability (AMV). However, whether the observed decadal NAO changes can be forced by the ocean is controversial. There is also evidence that artificially imposed multi-decadal stratospheric changes can impact the troposphere in winter. But the origins of such stratospheric changes are still unclear, especially in early to mid winter, where the radiative ozone-impact is negligible. Here we show, through observational analysis and atmospheric model experiments, that large-scale Atlantic warming associated with AMV drives high-latitude precursory stratospheric warming in early to mid winter that propagates downward resulting in a negative tropospheric NAO in late winter. The mechanism involves stratosphere/troposphere dynamical coupling, and can be simulated to a large extent, but only with a stratosphere resolving model (i.e., high-top). Further analysis shows that this precursory stratospheric response can be explained by the shift of the daily extremes toward more major stratospheric warming events. This shift cannot be simulated with the atmospheric (low-top) model configuration that poorly resolves the stratosphere and implements a sponge layer in upper model levels. While the potential role of the stratosphere in multi-decadal NAO and Atlantic meridional overturning circulation changes has been recognised, our results show that the stratosphere is an essential element of extra-tropical atmospheric response to ocean variability. Our findings suggest that the use of stratosphere resolving models should improve the simulation, prediction, and projection of extra-tropical climate, and lead to a better understanding of natural and anthropogenic climate change.  相似文献   
13.
During the last two decades, a variety of models have been applied to understand and predict changes in land use. These models assign a single-attribute label to each spatial unit at any particular time of the simulation. This is not realistic because mixed use of land is quite common. A more detailed classification allowing the modelling of mixed land use would be desirable for better understanding and interpreting the evolution of the use of land. A possible solution is the multi-label (ML) concept where each spatial unit can belong to multiple classes simultaneously. For example, a cluster of summer houses at a lake in a forested area should be classified as water, forest and residential (built-up). The ML concept was introduced recently, and it belongs to the machine learning field. In this article, the ML concept is introduced and applied in land-use modelling. As a novelty, we present a land-use change model that allows ML class assignment using the k nearest neighbour (kNN) method that derives a functional relationship between land use and a set of explanatory variables. A case study with a rich data-set from Luxembourg using biophysical data from aerial photography is described. The model achieves promising results based on the well-known ML evaluation criteria. The application described in this article highlights the value of the multi-label k nearest neighbour method (MLkNN) for land-use modelling.  相似文献   
14.
The Roshtkhar area is located in the Khaf-Kashmar-Bardaskan volcano-plutonic belt to the northeastern Iran along the regional E–W trending Dorouneh Fault, northeastern of the Lut Block. There are several outcrops of subvolcanic rocks occurring mainly as dikes in the area, which intruded into Cenozoic intrusive rocks. We present U–Pb dating of zircons from a diabase dike and syenite rock using LA-ICP-MS that yielded an age of 1778 ± 10 Ma for the dike, indicating this Cenozoic dike has zircon xenocrysts inherited from deeper sources; and 38.0 ± 0.5 Ma, indicating an Late Eocene crystallization age for the syenite. Geochemically, the dikes typical of high-K calc-alkaline to shoshonitic magmas. Petrographic observations and major and trace element variations suggest that diabase melts underwent variable fractionation of clinopyroxene, olivine, and Fe-Ti oxides and minor crustal contamination during the differentiation process. Primitive mantle-normalized multi-element diagrams display enrichment in LILE, such as Rb, Ba, Th, U, and Sr compared to HFSE, as well as negative anomalies of Nb, Ta, P, and Ti, suggesting derivation from subduction-modified mantle. Chondrite-normalized REE plots show moderately LREE enriched patterns (<3.83 LaN/YbN <8.27), and no significant Eu anomalies. Geochemical modelling using Sm/Yb versus La/Yb and La/Sm ratios suggests a low-degree of batch melting (~1–3%) of a phlogopite-spinel peridotite source to generate the mafic dikes. The geochemical signatures suggest that the Roshtkhar mafic dikes cannot be related directly to subduction and likely resulted from melting of upper mantle in an extensional setting where the heat flow was provided from deeper levels. These dikes presumably derived the zircon xenocrysts from the assimilation of upper crust of Gondwanian basement. Processes responsible for partial melting of metasomatized lithospheric mantle and post-collision magmatism in NE Iran was triggered by heating due to asthenospheric upwelling in an extensional setting.  相似文献   
15.
<正>The Makran accretionary prism is one of the most extensive subduction accretions on Earth.It is characterized by intense folding,thrust faulting and dislocation of the Cenozoic units consisted of sedimentary,igneous and metamorphic rocks.It is located in the southeast of Iran and southwest of Pakistan.Rock  相似文献   
16.
The Shanderman eclogites and related metamorphosed oceanic rocks mark the site of closure of the Palaeotethys ocean in northern Iran. The protolith of the eclogites was an oceanic tholeiitic basalt with MORB composition. Eclogite occurs within a serpentinite matrix, accompanied by mafic rocks resembling a dismembered ophiolite. The eclogitic mafic rocks record different stages of metamorphism during subduction and exhumation. Minerals formed during the prograde stages are preserved as inclusions in peak metamorphic garnet and omphacite. The rocks experienced blueschist facies metamorphism on their prograde path and were metamorphosed in eclogite facies at the peak of metamorphism. The peak metamorphic mineral paragenesis of the rocks is omphacite, garnet (pyrope‐rich), glaucophane, paragonite, zoisite and rutile. Based on textural relations, post‐peak stages can be divided into amphibolite and greenschist facies. Pressure and temperature estimates for eclogite facies minerals (peak of metamorphism) indicate 15–20 kbar at ~600 °C. The pre‐peak blueschist facies assemblage yields <11 kbar and 400–460 °C. The average pressure and temperature of the post‐peak amphibolite stage was 5–6 kbar, ~470 °C. The Shanderman eclogites were formed by subduction of Palaeotethys oceanic crust to a depth of no more than 75 km. Subduction was followed by collision between the Central Iran and Turan blocks, and then exhumation of the high pressure rocks in northern Iran.  相似文献   
17.
A general decomposition approach for the static method of limit analysis is proposed. It is based on piecewise linear stress fields, on a partition into finite element sub‐problems and on a specific coordination of the subproblem stress fields through auxiliary interface problems. The final convex optimization problems are solved using nonlinear interior point programming methods. As validated for the compressed bar with Tresca/von Mises materials in plane strain, this method appears rapidly convergent, so that very large problems with millions of constraints and variables can be solved. Then the method is applied to the classical problem of the stability of a Tresca vertical cut: the static bound to the stability factor is improved to 3.7752, a value to be compared with the recent best upper bound 3.7776. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
18.
The use of cellular automata (CA) has for some time been considered among the most appropriate approaches for modeling land‐use changes. Each cell in a traditional CA model has a state that evolves according to transition rules, taking into consideration its own and its neighbors’ states and characteristics. Here, we present a multi‐label CA model in which a cell may simultaneously have more than one state. The model uses a multi‐label learning method—a multi‐label support vector machine, Rank‐SVM—to define the transition rules. The model was used with a multi‐label land‐use dataset for Luxembourg, built from vector‐based land‐use data using a method presented here. The proposed multi‐label CA model showed promising performance in terms of its ability to capture and model the details and complexities of changes in land‐use patterns. Applied to historical land use data, the proposed model estimated the land use change with an accuracy of 87.2% exact matching and 98.84% when including cells with a misclassification of a single label, which is comparably better than a classical multi‐class model that achieved 83.6%. The multi‐label cellular automata outperformed a model combining CA and artificial neural networks. All model goodness‐of‐fit comparisons were quantified using various performance metrics for predictive models.  相似文献   
19.
The Makran accretionary prism in SE Iran and SW Pakistan is one of the most extensive subduction accretions on Earth. It is characterized by intense folding, thrust faulting and dislocation of the Cenozoic units that consist of sedimentary, igneous and metamorphic rocks. Rock units forming the northern Makran ophiolites are amalgamated as a mélange. Metamorphic rocks, including greenschist, amphibolite and blueschist, resulted from metamorphism of mafic rocks and serpentinites. In spite of the geodynamic significance of blueschist in this area, it has been rarely studied. Peak metamorphic phases of the northern Makran mafic blueschist in the Iranshahr area are glaucophane, phengite, quartz±omphacite+epidote. Post peak minerals are chlorite, albite and calcic amphibole. Blueschist facies metasedimentary rocks contain garnet, phengite, albite and epidote in the matrix and as inclusions in glaucophane. The calculated P–T pseudosection for a representative metabasic glaucophane schist yields peak pressure and temperature of 11.5–15 kbar at 400–510 °C. These rocks experienced retrograde metamorphism from blueschist to greenschist facies (350–450 °C and 7–8 kbar) during exhumation. A back arc basin was formed due to northward subduction of Neotethys under Eurasia (Lut block). Exhumation of the high‐pressure metamorphic rocks in northern Makran occurred contemporarily with subduction. Several reverse faults played an important role in exhumation of the ophiolitic and HP‐LT rocks. The presence of serpentinite shows the possible role of a serpentinite diapir for exhumation of the blueschist. A tectonic model is proposed here for metamorphism and exhumation of oceanic crust and accretionary sedimentary rocks of the Makran area. Vast accretion of subducted materials caused southward migration of the shore.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号