首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   1篇
  国内免费   1篇
测绘学   7篇
大气科学   1篇
地球物理   6篇
地质学   17篇
海洋学   5篇
天文学   1篇
自然地理   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   5篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  1999年   1篇
  1985年   1篇
排序方式: 共有38条查询结果,搜索用时 31 毫秒
11.
The purpose of this paper is to present and evaluate a new technique to better understand ionospheric convection and it’s magnetospheric drivers using convection maps derived from the Super Dual Auroral Radar Network (SuperDARN). We postulate that the directional derivative of the SuperDARN ionospheric convection flow can be used as a technique for understanding solar wind–magnetosphere–ionosphere coupling by identifying regions of strong acceleration/deceleration of plasma flow associated with drivers of magnetospheric convection such as magnetic reconnection. Thus, the technique may be used to identify the open–closed magnetic field line boundary (OCB) in certain circumstances. In this study, directional derivatives of the SuperDARN ionospheric convection flow over a four and a half hour interval on Nov. 04, 2001, is presented during which the interplanetary magnetic field was predominantly southward. At each one-minute time point in the interval the positive peak in the directional derivative of flow is identified and evaluated via comparison with known indicators of the OCB including the poleward boundary of ultraviolet emissions from three FUV detectors onboard the IMAGE spacecraft as well as the SuperDARN spectral widths. Good comparison is found between the location of the peak in the directional derivative of SuperDARN flow and the poleward boundary of ultraviolet emissions confirming that acceleration of ionospheric plasma flow is associated with magnetic reconnection and the open–closed boundary.  相似文献   
12.
This paper covers spatial and temporal variation in phytoplankton communities and physico-chemical water properties in the cage culture area of Sepanggar Bay, Sabah, Malaysia based on field measurement conducted during July 2005 to January 2006 to study the spatial and temporal variation in phytoplankton communities and physico-chemical water properties of the bay. Phytoplankton samples and water parameters data were collected from five different stations located inside the bay during Southwest, Interseasonal and Northeast monsoons. Forty phytoplankton genera, representatives of 23 families, were found in the study area with a mean abundance of 1.55 ± 1.19 × 106 cells L−1. Most of these genera belong to diatoms (82.17%), Dinoflagellates (17.55%) and cyanobacteria (0.29%). Three genera were found to be dominant (>10%) in phytoplankton abundance and these were Coscinodiscus spp. (36.38%), Chaetoceros spp (17.65%) and Bacteriastrum spp. (10.98%). The most dominant genus was Coscinodiscus spp. which showed high abundance during all monsoons and stations (except Station 3). Among the seven environmental parameters tested in this study, water temperature, pH and suspended sediment concentration were found to be significantly different between monsoons. On the other hand, no significant differences were found between stations for the studied physico-chemical parameters. A clear differences in phytoplankton densities were observed between monsoons and stations with higher mean abundances during interseasonal monsoon (2.40 ± 1.37 × 106 cells L−1) and at station five (2.05 ± 0.74 × 106 cells L−1), respectively. Conversely, the diversity indices, both Shannon–Wiener (H)(H) and Pielou (J)(J), showed no significant difference throughout stations and monsoons (except (H)(H) for monsoons). Analysis of similarity (ANOSIM) results demonstrated temporal differences in phytoplankton community structure with highly diverse phytoplankton assemblage. Through cluster analysis five groups of phytoplankton were attained (at 40% similarity level) though no marked separation of the taxonomic classes pointed towards the constant pattern of the phytoplankton assemblage in the studied area.  相似文献   
13.
ABSTRACT

The concept of seismic vulnerability is a yard-stick of damage estimation from a probable earthquake considering physical cum social dimension and enables a basis for decision-makers to develop preparedness and mitigation strategies. We aim at vulnerability assessment of the typical urban system of capital city Shillong situated on hilly terrain. High-resolution satellite imagery of Shillong facilitates analysis of building footprints, communication network, and open ground. Different building typologies are identified taking into account the building’s structural configuration assessed through a rapid visual survey of more than 15% of total residential households. Slope map demarcates the landslide-prone area through discrete elevation modelling. A methodology incorporating several parameters e.g. building typology, slope angle, shear wave velocity characteristics, geomorphology, and the number of occupants in correlation with a physical measurement of vulnerability is presented and is applied to estimate the dimension of vulnerability. Additionally, MASW survey indicates lithology up to 30?m deep along with the existence of stiff soil and rocks at different depths whereas resonant frequency is identified to be in the range of 6–8?Hz through H/V ratio. Integrating all, it is observed that more than 60% of Shillong city falls under moderate to higher vulnerability and the rest is less vulnerable.  相似文献   
14.
Large abstraction by water-wells has been causing a linear to exponential drop in groundwater level and substantial aquifer dewatering in Dhaka, Bangladesh. The city is almost entirely dependent on groundwater, which occurs beneath the area in an unconsolidated Plio-Pleistocene sandy aquifer. Analysis shows that the pattern of water-level change largely replicates the patterns of change in the rate of groundwater abstraction. Contribution of the aquifer storage to the abstraction is estimated to be more than 15% in the year 2002. This abstraction has caused a sharp drop in water level throughout the city and turned into two cones of depression in the water level. Upper parts of the aquifer are already dewatered throughout the area, with the exception of part of the northeast and southeast corner of the city. It is calculated that about 41 million cubic metres (MCM) of the aquifer dewatered by the year 1988, which increased to 2,272 MCM in the year 2002. Water-level decline may increase non-linearly due to limiting vertical recharge in areas where the aquifer is dewatered and may severely threaten the sustainability of the aquifer.  相似文献   
15.
The extremely heterogeneous distribution of As in Bangladesh groundwater has hampered efforts to identify with certainty the mechanisms that lead to extensive mobilization of this metalloid in reducing aquifers. We show here on the basis of a high-resolution transect of soil and aquifer properties collected in Araihazar, Bangladesh, that revealing tractable associations between As concentrations in shallow (< 20 m) groundwater with other geological, hydrological, and geochemical features requires a lateral sampling resolution of 10–100 m. Variations in the electromagnetic conductivity of surface soils (5–40 mS/m) within a 500 m × 200 m area are documented with 560 EM31 measurements. The results are compared with a detailed section of groundwater As concentrations (5–150 μg/L) and other aquifer properties obtained with a simple sampling device, “the needle-sampler”, that builds on the local drilling technology. By invoking complementary observations obtained in the same area and in other regions of Bangladesh, we postulate that local groundwater recharge throughout permeable sandy soils plays a major role in regulating the As content of shallow aquifers by diluting the flux of As released from reducing sediments.  相似文献   
16.
17.
Remote sensing is the most practical method available to managers of flood-prone areas for quantifying and mapping flood impacts. This study explored large inundation areas in the Maghna River Basin, around the northeastern Bangladesh, as determined from passive sensor LANDSAT data and the cloud-penetrating capabilities of the active sensors of the remote imaging microwave RADARSAT. This study also used passive sensor LANDSAT wet and dry images for the year 2000. Spatial resolution was 30 m by 30 m for comparisons of the inundation area with RADARSAT images. RADARSAT images with spatial resolution of 50 m by 50 m were used for frequency analysis of floods from 2000 to 2004. Time series images for 2004 were also used. RADARSAT remote sensing data, GIS data, and ground data were used for the purpose of flood monitoring, mapping and assessing. A supervised classification technique was used for this processing. They were processed for creating a maximum water extent map and for estimating inundation areas. The results of this study indicated that the maximum extent of the inundation area as estimated using RADARSAT satellite imaging was about 29, 900.72 km2 in 2004, which corresponded well with the heavy rainfall around northeast region, as seen at the Bhairab Bazar station and with the highest water level of the Ganges–Brahmaputra–Meghna (GBM) Rivers. A composite of 5 years of RADARSAT inundation maps from 2000 to 2004, GIS data, and damage data, was used to create unique flood hazard maps. Using the damage data for 2004 and the GIS data, a set of damage maps was also created. These maps are expected to be useful for future planning and flood disaster management. Thus, it has been demonstrated that RADARSAT imaging data acquired over the Bangladesh have the ability to precisely assess and clarify inundation areas allowing for successful flood monitoring, mapping and disaster management.  相似文献   
18.
Dhaka, the capital of Bangladesh, is home to a population of 15 million people, whose water supply is 85% drawn from groundwater in aquifers that underlie the city. Values of Cl/Br >500 are common in groundwater beneath western Dhaka in areas <3 km from the river, and in rivers and sewers around and within the city. The study shows that groundwater beneath western Dhaka is strongly influenced by infiltration of effluent from leaking sewers and unsewered sanitation, and by river-bank infiltration from the Turag-Buriganga river system which bounds the western limit of the city. River-bank infiltration from other rivers around Dhaka is minor. Values of Cl/Br and Cl concentrations reveal that 23 % of wells sampled in Dhaka are influenced by saline connate water in amounts up to 1%. This residual natural salinity compromises the use of electrical conductivity of groundwater as a method for defining pathways of recharge by contaminated surface waters. Concentrations of As, B, Ba, Cd, Cu, F, Ni, NO3, Pb, Sb, Se and U in groundwater samples are less than WHO health-based guideline values for drinking water.  相似文献   
19.
20.
The Straits of Malacca is subjected to a great variety of environmental stresses due to its strategic location as a major international shipping lane and the concentration of agriculture, industry and urbanisation which predominate on the west coast of Peninsular Malaysia. This paper gives an overview of the study conducted in the Malacca Straits as part of the GEF/UNDP/IMO Regional Programme on the Prevention and Management of Marine Pollution in the East Asian Seas, in particular pertaining to the identification of land and sea-based sources of pollution in Malaysia which contributes to the pollution load in the Straits, as well as the assessment of the relative contribution of each source.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号