首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   2篇
测绘学   3篇
大气科学   1篇
地球物理   15篇
地质学   16篇
海洋学   3篇
天文学   1篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   4篇
  2013年   4篇
  2012年   1篇
  2011年   4篇
  2010年   2篇
  2009年   4篇
  2008年   1篇
  2007年   3篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
11.
We consider identification of absolute permeability (hydraulic conductivity) based on time series of pressure data in sparsely distributed wells for two-phase porous-media flow. For this problem, it is impossible to recover all details of the parameter function. On the other hand, a coarser, approximate recovery may be sufficient for many applications. We propose a novel solution approach, based on reparametrization, for such approximate identification of the parameter function. We use a nonlinear, composite representation, which is detached from the computational grid, allowing for a flexible representation of the parameter function at many resolution levels. This is utilized in a sequential multi-level estimation of the parameter function, starting at a coarse resolution, which is then gradually refined. The composite representation is designed to allow for smooth as well as sharp transitions between regions of nearly constant parameter value. Moreover, it facilitates the estimation also of the structure and smoothness of the parameter function itself. As a limiting case, the chosen representation is reduced to a zonation with implicit representation of the interior boundaries that is equivalent to a level-set representation. A motivation for the selected representation and the multi-level estimation is presented in terms of an analysis of sensitivity and nonlinearity. Numerical examples demonstrate identification of coarse-scale features of reference permeability distributions with varying degree of smoothness. Comparisons show how the multi-level strategy stabilize the identification and avoid local minima of the objective function compared to a single-level strategy.  相似文献   
12.
13.
Segara Anakan, a mangrove-fringed coastal lagoon in Indonesia, has a high diversity of macrobenthic invertebrates and is increasingly affected by human activities. We found >50 organic contaminants in water, sediment and macrobenthic invertebrates from the lagoon most of which were polycyclic aromatic compounds (PACs). Composition of PACs pointed to petrogenic contamination in the eastern lagoon. PACs mainly consisted of alkylated PAHs, which are more abundant in crude oil than parent PAHs. Highest total PAC concentration in sediment was above reported toxicity thresholds for aquatic invertebrates. Other identified compounds derived from municipal sewage and also included novel contaminants like triphenylphosphine oxide. Numbers of stored contaminants varied between species which is probably related to differences in microhabitat and feeding mode. Most contaminants were detected in Telescopium telescopium and Polymesoda erosa. Our findings suggest that more attention should be paid to the risk potential of alkylated PAHs, which has hardly been addressed previously.  相似文献   
14.
In simulation of fluid injection in fractured geothermal reservoirs, the characteristics of the physical processes are severely affected by the local occurence of connected fractures. To resolve these structurally dominated processes, there is a need to develop discretization strategies that also limit computational effort. In this paper, we present an upscaling methodology for geothermal heat transport with fractures represented explicitly in the computational grid. The heat transport is modeled by an advection-conduction equation for the temperature, and solved on a highly irregular coarse grid that preserves the fracture heterogeneity. The upscaling is based on different strategies for the advective term and the conductive term. The coarse scale advective term is constructed from sums of fine scale fluxes, whereas the coarse scale conductive term is constructed based on numerically computed basis functions. The method naturally incorporates the coupling between solution variables in the matrix and in the fractures, respectively, via the discretization. In this way, explicit transfer terms that couple fracture and matrix solution variables are avoided. Numerical results show that the upscaling methodology performs well, in particular for large upscaling ratios, and that it is applicable also to highly complex fracture networks.  相似文献   
15.
The deep thermal field in sedimentary basins can be affected by convection, conduction or both resulting from the structural inventory, physical properties of geological layers and physical processes taking place therein. For geothermal energy extraction, the controlling factors of the deep thermal field need to be understood to delineate favorable drill sites and exploitation compartments. We use geologically based 3-D finite element simulations to figure out the geologic controls on the thermal field of the geothermal research site Groß Schönebeck located in the E part of the North German Basin. Its target reservoir consists of Permian Rotliegend clastics that compose the lower part of a succession of Late Carboniferous to Cenozoic sediments, subdivided into several aquifers and aquicludes. The sedimentary succession includes a layer of mobilized Upper Permian Zechstein salt which plays a special role for the thermal field due to its high thermal conductivity. Furthermore, the salt is impermeable and due to its rheology decouples the fault systems in the suprasalt units from subsalt layers. Conductive and coupled fluid and heat transport simulations are carried out to assess the relative impact of different heat transfer mechanisms on the temperature distribution. The measured temperatures in 7 wells are used for model validation and show a better fit with models considering fluid and heat transport than with a purely conductive model. Our results suggest that advective and convective heat transport are important heat transfer processes in the suprasalt sediments. In contrast, thermal conduction mainly controls the subsalt layers. With a third simulation, we investigate the influence of a major permeable and of three impermeable faults dissecting the subsalt target reservoir and compare the results to the coupled model where no faults are integrated. The permeable fault may have a local, strong impact on the thermal, pressure and velocity fields whereas the impermeable faults only cause deviations of the pressure field.  相似文献   
16.
Reducing aliasing effects of insufficiently modelled high-frequent, non-tidal mass variations of the atmosphere, the oceans and the hydrosphere in gravity field models derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission is the topic of this study. The signal content of the daily GRACE gravity field model series (ITG-Kalman) is compared to high-frequency bottom pressure variability and terrestrially stored water variations obtained from recent numerical simulations from an ocean circulation model (OMCT) and two hydrological models (WaterGAP Global Hydrology Model, Land Surface Discharge Model). Our results show that daily estimates of ocean bottom pressure from the most recent OMCT simulations and the daily ITG-Kalman solutions are able to explain up to 40 % of extra-tropical sea-level variability in the Southern Ocean. In contrast to this, the daily ITG-Kalman series and simulated continental total water storage variability largely disagree at periods below 30 days. Therefore, as long as no adequate hydrological model will become available, the daily ITG-Kalman series can be regarded as a good initial proxy for high-frequency mass variations at a global scale. As a second result of this study, based on monthly solutions as well as daily observation residuals, it is shown that applying this GRACE-derived de-aliasing model supports the determination of the time-variable gravity field from GRACE data and the subsequent geophysical interpretation. This leads us to the recommendation that future satellite concepts for determining mass variations in the Earth system should be capable of observing higher frequeny signals with sufficient spatial resolution.  相似文献   
17.
18.
The Alps play a pivotal role for glacier and climate reconstructions within Europe. Detailed glacial chronologies provide important insights into mechanisms of glaciation and climate change. We present 26 10Be exposure dates of glacially transported boulders situated on moraines and ice‐moulded bedrock samples at the Belalp cirque and the Great Aletsch valley, Switzerland. Weighted mean ages of ~10.9, 11.1, 11.0 and 9.6 ka for the Belalp, on up to six individual moraine ridges, constrain these moraines to the Egesen, Kartell and Schams stadials during Lateglacial to early Holocene times. The weighted mean age of ~12.5 ka for the right‐lateral moraine of the Great Aletsch correlates with the Egesen stadial related to the Younger Dryas cooling. These data indicate that during the early Holocene between ~11.7 and ~9.2 ka, glaciers in the Swiss Alps seem to have been significantly affected by cold climatic conditions initiated during the Younger Dryas and the Preboreal Oscillation. These conditions resulted in glacier margin oscillations relating to climatic fluctuations during the second phase of the Younger Dryas – and continuing into Boreal times – as supported by correlation of the innermost moraine of the Belalp Cirque to the Schams (early) Holocene stage. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
19.
The large amounts of leaf litter produced by tropical mangrove forests serve as a major food source for the benthic fauna. The reasons for the preferential consumption of mangrove leaves by crabs are unclear as yet. We investigated the diet, food preferences and consumption rates of 8 dominant grapsoid crab species (Perisesarma spp., Episesarma spp., Metopograpsus latifrons, and Metaplax elegans) in mangroves of Segara Anakan, Java, Indonesia, by means of stomach-content analysis and feeding experiments. Leaves from the five most abundant mangrove tree species (Aegiceras corniculatum, Avicennia alba, Ceriops decandra, Rhizophora apiculata, and Sonneratia caseolaris) were analyzed for organic carbon, total nitrogen, δ13C, δ15N and amino acids and hexosamines. This study is the first that investigated crab food preferences related to the nitrogen compound composition of leaves.Our results show that Episesarma spp. and Perisesarma spp. are omnivorous crabs which mainly feed on detritus, mangrove litter and bark, and on a small amount of roots, algae and animal matter whereas M. elegans is a detritus feeder. In feeding experiments with green, yellow and brown leaves Perisesarma spp. and E. singaporense had the highest consumption rates for brown leaves of R. apiculata and S. caseolaris, and for green leaves of A. alba. Preferred leaves were characterized by a high amount and/or freshness of nitrogenous compounds and their biochemical composition was significantly different from that of disliked leaves (all leaves of A. corniculatum and C. decandra, green and yellow leaves of R. apiculata and S. caseolaris). The presence of the hexosamine galactosamine found only in brown leaves indicates that bacteria contribute to the amount of bioavailable nitrogen compounds. We infer that the nitrogen compound composition rather than the C/N ratio alone is a determinant for bioavailability of mangrove leaves and hence may partly explain the crabs' food preferences.  相似文献   
20.
Evapotranspiration (ET) is one of the main components of the hydrological cycle. It is a complex process driven mainly by weather parameters, and as such, is characterized by high non-linearity and non-stationarity. This paper introduces a methodology combining wavelet multiresolution analysis with a machine learning algorithm, the multivariate relevance vector machine (MVRVM), in order to predict 16 days of future daily reference evapotranspiration (ETo). This methodology lays the ground for forecasting the spatial distribution of ET using Landsat satellite imagery, hence the choice of 16 days, which corresponds with the Landsat overpass cycle. An accurate prediction of daily ETo is needed to improve the management of irrigation schedules as well as the operations of water supply facilities like canals and reservoirs. In this paper, various wavelet decompositions were performed and combined with MVRVM to develop hybrid models to predict ETo over a 16-days period. These models were compared to a MVRVM model, and models accuracy and robustness were evaluated. The addition of 10 days of forecasted air temperature as additional inputs to the forecasting models was also investigated. The results of the wavelet-MVRVM hybrid modeling methodology showed that a reliable forecast of ETo up to 16 days ahead is possible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号