首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87629篇
  免费   1797篇
  国内免费   803篇
测绘学   2292篇
大气科学   7275篇
地球物理   18342篇
地质学   29384篇
海洋学   7341篇
天文学   19398篇
综合类   186篇
自然地理   6011篇
  2020年   597篇
  2019年   644篇
  2018年   1301篇
  2017年   1297篇
  2016年   1861篇
  2015年   1325篇
  2014年   1914篇
  2013年   4258篇
  2012年   2051篇
  2011年   2973篇
  2010年   2554篇
  2009年   3725篇
  2008年   3368篇
  2007年   2991篇
  2006年   3117篇
  2005年   2712篇
  2004年   2767篇
  2003年   2633篇
  2002年   2548篇
  2001年   2254篇
  2000年   2251篇
  1999年   1935篇
  1998年   1910篇
  1997年   1882篇
  1996年   1657篇
  1995年   1550篇
  1994年   1414篇
  1993年   1302篇
  1992年   1237篇
  1991年   1095篇
  1990年   1291篇
  1989年   1130篇
  1988年   1053篇
  1987年   1254篇
  1986年   1129篇
  1985年   1356篇
  1984年   1591篇
  1983年   1525篇
  1982年   1394篇
  1981年   1337篇
  1980年   1167篇
  1979年   1135篇
  1978年   1205篇
  1977年   1099篇
  1976年   1024篇
  1975年   970篇
  1974年   1022篇
  1973年   996篇
  1972年   633篇
  1971年   560篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
141.
Abstract— Amino acid analyses of the Antarctic CM2 chondrites Allan Hills (ALH) 83100 and Lewis Cliff (LEW) 90500 using liquid chromatography‐time of flight‐mass spectrometry (LC‐ToF‐MS) coupled with UV fluorescence detection revealed that these carbonaceous meteorites contain a suite of indigenous amino acids not present in Antarctic ice. Several amino acids were detected in ALH 83100, including glycine, alanine, β‐alanine, γ‐amino‐n‐butyric acid (γ‐ABA), and α‐aminoisobutyric acid (AIB) with concentrations ranging from 250 to 340 parts per billion (ppb). In contrast to ALH 83100, the CM2 meteorites LEW 90500 and Murchison had a much higher total abundance of these amino acids (440–3200 ppb). In addition, ALH 83100 was found to have lower abundances of the α‐dialkyl amino acids AIB and isovaline than LEW 90500 and Murchison. There are three possible explanations for the depleted amino acid content in ALH 83100: 1) amino acid leaching from ALH 83100 during exposure to Antarctic ice meltwater, 2) a higher degree of aqueous alteration on the ALH 83100 parent body, or 3) ALH 83100 originated on a chemically distinct parent body from the other two CM2 meteorites. The high relative abundance of ?‐amino‐n‐caproic acid (EACA) in the ALH 83100 meteorite as well as the Antarctic ice indicates that Nylon‐6 contamination from the Antarctic sample storage bags may have occurred during collection.  相似文献   
142.
We present a collation of the available data on the opening angles of jets in X-ray binaries, which in most cases are small (≲10°). Under the assumption of no confinement, we calculate the Lorentz factors required to produce such small opening angles via the transverse relativistic Doppler effect. The derived Lorentz factors, which are in most cases lower limits, are found to be large, with a mean >10, comparable to those estimated for active galactic nuclei (AGN) and much higher than the commonly assumed values for X-ray binaries of 2–5. Jet power constraints do not, in most cases, rule out such high Lorentz factors. The upper limits on the opening angles show no evidence for smaller Lorentz factors in the steady jets of Cygnus X-1 and GRS 1915+105. In those sources in which deceleration has been observed (notably  XTE J1550−564  and Cygnus X-3), some confinement of the jets must be occurring, and we briefly discuss possible confinement mechanisms. It is however possible that all the jets could be confined, in which case the requirement for high bulk Lorentz factors can be relaxed.  相似文献   
143.
144.
145.
To derive a matched filter for detecting a weak target signal in a hyperspectral image, an estimate of the band-to-band covariance of the target-free background scene is required. We investigate the effects of including some of the target signal in the background scene. Although the covariance is contaminated by the presence of a target signal (there is increased variance in the direction of the target signature), we find that the matched filter is not necessarily affected. In fact, if the variation in plume strength is strictly uncorrelated with the variation in background spectra, the matched filter and its signal-to-clutter ratio (SCR) performance will not be impaired. While there is little a priori reason to expect significant correlation between the plume and the background, there usually is some residual correlation, and this correlation leads to a suppressing effect that limits the SCR obtainable even for strong plumes. These effects are described and quantified analytically, and the crucial role of this correlation is illustrated with some numerical examples using simulated plumes superimposed on real hyperspectral imagery. In one example, we observe an order-of-magnitude loss in SCR for a matched filter based on the contaminated covariance.  相似文献   
146.
147.
148.
149.
The concept of closest approach is analyzed in Hill’s problem, resulting in a partitioning of the position space. The different behavior between the direct and retrograde motion is explained analytically, resulting in a simple estimate of the variation of Hill’s periodic and quasi-circular orbits as a function of the Jacobi constant. The local behavior of the orbits on the zero velocity surfaces and an analytical definition of local escape and capture in Hill’s problem are also given.  相似文献   
150.
The results of a photometric monitoring of the quasar 4C 38.41, performed at the optical R and B bands in 2002 February–March, are presented. With a 60/90 cm Schmidt telescope at the Xinglong station of the National Astronomical Observatories of China, we observed the source exhibiting amplitude variations of up to 0.78 mag in both bands during the whole campaign. Intraday and even intranight variations are detected as well. A typical variability time-scale of about 36 d is derived from our 2-month observations at the optical bands, which is identical to that found at a radio wavelength of 92 cm, suggesting a common origin for the variations in 4C 38.41 from optical to radio bands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号