首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   1篇
测绘学   5篇
大气科学   9篇
地球物理   18篇
地质学   34篇
海洋学   4篇
天文学   7篇
自然地理   10篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2013年   3篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   4篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   5篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   1篇
  1995年   6篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   5篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有87条查询结果,搜索用时 63 毫秒
41.
The growth of the Internet and the digital revolution have meant increased reliance on electronic representations of information. Geospatial information has been readily adapted to the world of cyberspace, and most Web pages incorporate graphics, images, or maps to represent spatial and spatialized data. But flat computer screens do not facilitate a map or graph experience by those who are visually impaired. The traditional method for compensating for nonvisual access to maps and graphics has been to construct hard‐copy tactile maps. In this article, we examine an electronic accommodation for nonvisual users—the haptic map. Using new and off‐the‐shelf hardware—force feedback and vibrotactile mice—we explore how touch can be combined with virtual representations of shapes and patterns to enable nonvisual access to onscreen map or graphic material.  相似文献   
42.
The Catalina Schist and Rand Schist are two high P/T terranes in southern California. The Catalina Schist is correlated with the Franciscan Complex and occurs in the continental borderland. It consists of a blueschist-facies melange tectonically overlain by a greenschist unit, which, in turn, is overthrust by an amphibolite unit. The greenschist unit itself is inversely zoned from epidote-amphibolite fades at the top through greenschist facies in the center to transitional blueschist-greenschist facies at the base. The Rand Schist is part of the eugeoclinal Pelona-Orocopia Schist terrane, which lies interior to the present continental margin, structurally beneath Precambrian to Mesozoic sialic basement. The Rand Schist is inversely zoned from epidote-amphibolite facies to transitional blueschist-greenschist facies, similar to the greenschist unit of the Catalina Schist.Two trends in amphibole composition, one from actinolite to hornblende in greenschists and epidote amphibolites (calcic series) and the other from actinolite through winchite to crossite in glaucophanic greenschists (sodic-calcic series), are present in both the Rand Schist and the greenschist unit of the Catalina Schist. The transition from actinolite to hornblende in the calcic series is defined by increases in tschermakite, edenite, and glaucophane substitution. Amphiboles of the sodic-calcic series differ mainly in the degree of glaucophanic substitution. The similarity of amphibole trends in the two terranes indicates that they were metamorphosed at approximately the same pressures and temperatures, and is evidence that the Rand Schist originated in a subduction zone, despite its present intracontinental setting.Most glaucophanic greenschists in the Rand and Catalina Schists contain both a sodic and a calcic member of the sodic-calcic series. Textural relations indicate that calcic members generally developed after the sodic ones. This implies that sodic amphibole formerly may have been present in many of the structurally higher greenschists and epidote amphibolites. Preservation of the inverted zonations, as well as microstructural evidence for the syntectonic development of calcic and sodic-calcic amphiboles, suggest that glaucophanic greenschists, greenschists, and epidote amphibolites all formed during underthrusting (subduction). This contrasts with many orogenic belts, where replacement of blueschists by greenschists to amphibolites is attributed to thermal reequilibration during erosional unroofing.  相似文献   
43.
A method for obtaining pointwise or spatially averaged estimates of a nonintrinsic function is introduced based on residual kriging. The method relies on a stepwise iterative regression process for simultaneously estimating the global drift and residual semivariogram. Estimates of the function are then obtained by solving a modified set of simple kriging equations written for the residuals. The modification consists of replacing the true variogram in the kriging equations by the variogram of the residual estimates as obtained from the iterative regression process. The method is illustrated by considering groundwater levels in an Arizona aquifer. The results are compared with those obtained for the aquifer by the generalized covariance package BLUEPACK-3D.  相似文献   
44.
45.
46.
According to various historical sources an earthquake and an associated tsunami wiped out the Greek city of Helike on the Gulf of Corinth in 373 B.C. This study combines stratigraphical data from a new series of sediment cores with archaeological findings of the Helike Project to better assess the fate of Helike. Abrupt lithological changes, for example, from coarse‐grained littoral facies at the base to fine‐grained lagoonal deposits, in three of the new cores suggest sudden formation of lagoonal or lacustrine conditions in the central delta during tectonic events of subsidence due to fault‐slip. These events date before c. 2550 B.C., before 348 cal. B.C.–64 cal. A.D. (probably 373 B.C.), and before 1437–1634 cal. A.D. (probably A.D. 1402). Vertically displaced isochronic surfaces between two neighboring cores may be related to active faulting of the fan‐delta north of the Western Helike Fault Zone in 373 B.C. and A.D. 1402. Although the Helike Project reported possible tsunami evidence in earlier cores and trenches, no unequivocal sedimentary traces of a tsunami were identified in the Classical horizons of the new cores.  相似文献   
47.
To improve understanding of Ca isotope transport during water-rock interaction on the continents, we measured dissolved δ44Ca values along a 236 km flow path in the Madison aquifer, South Dakota, where fluids have chemically evolved according to dolomite and anhydrite dissolution, calcite precipitation, and Ca-for-Na ion-exchange over a timescale spanning ~ 15 kyr. We used a reactive transport model employing rate data constrained from major ion mass-balances to evaluate the extent to which calcite precipitation and ion-exchange fractionate Ca isotopes. Elevated δ44Ca values during the initial and final stages of water transport possibly result from calcite precipitation under supersaturated conditions and Ca-for-Na ion-exchange, respectively. However, for the bulk of the flow path, δ44Ca values evolve by mixing between anhydrite and dolomite dissolution, with no fractionation during calcite precipitation under saturated conditions. We attribute the absence of Ca isotope fractionation to the long timescale of water-rock interaction and slow rate of calcite precipitation, which have enabled fluids to chemically and isotopically equilibrate with calcite. We therefore conclude that the equilibrium Ca isotope fractionation factor between calcite and water (Δcal–w) is very close to zero. To the extent that the Madison aquifer typifies other groundwater systems where calcite slowly precipitates from solutions at or near chemical equilibrium, this study suggests that groundwater contributions to δ44Ca variability on the continents can be modeled according to simple mixing theory without invoking isotope discrimination.  相似文献   
48.
Petrographic, electron microprobe, and bulk-rock geochemical analyses indicate that the distribution and composition of ferromagnesian silicates (biotite, garnet, and staurolite) in and adjacent to the metamorphosed Bleikvassli Zn–Pb–(Cu) volcanogenic massive sulfide deposit, Norway, are dependent upon the competing effects of f O2f S2 and host-rock composition. The enrichment in magnesium content of these silicates within the orebody and at distances of as much as 5–10 m away is due to the increased f O2 and f S2 conditions imposed on the silicates in zones subject to minor hydrothermal alteration during regional metamorphism. Alternatively, within pelitic country rocks at distances >5–10 m from ore, the host-rock chemistry controls the composition of metamorphic silicate minerals. Also, country rocks within a few meters of ore are distinguished by the common presence of zinc-bearing staurolite (up to 9 wt% ZnO) coexisting with biotite ± garnet. Rocks in the Bleikvassli deposit were hydrothermally enriched in zinc and fluorine prior to metamorphism. The fluorine resides mainly in biotite, which is an additional contributing factor to the magnesium enrichment of that mineral due to Fe2+–F avoidance. Our inference that the sulfidation–oxidation halo around the Bleikvassli ore deposit is only meters in width contrasts with the view of Maiga (1983), who proposed the effects of sulfidation could be identified at distances >159 m from ore. It is evident that the delineation of a sulfidation–oxidation halo bordering a metamorphosed massive sulfide deposit must be done carefully in order to discriminate between the effects due to variations in primary rock composition versus those resulting from a sulfur and oxygen fugacity gradient between the massive sulfides and the sulfur-poor country rocks. Received: 1 March 1998 / Accepted: 3 May 2000  相似文献   
49.
A controlled field pilot has been developed in Bozeman, Montana, USA, to study near surface CO2 transport and detection technologies. A slotted horizontal well divided into six zones was installed in the shallow subsurface. The scale and CO2 release rates were chosen to be relevant to developing monitoring strategies for geological carbon storage. The field site was characterized before injection, and CO2 transport and concentrations in saturated soil and the vadose zone were modeled. Controlled releases of CO2 from the horizontal well were performed in the summers of 2007 and 2008, and collaborators from six national labs, three universities, and the U.S. Geological Survey investigated movement of CO2 through the soil, water, plants, and air with a wide range of near surface detection techniques. An overview of these results will be presented.  相似文献   
50.
We dissolved Boulder Creek Granodiorite in a plug flow reactor for 5794 h at pH = 1 and T = 25 °C. The primary purpose of the experiment was to identify controls on dissolved δ44/40Ca, δ44/42Ca, and δ26/24Mg values during granite weathering. Herein, we also examine the origin of Ca and Mg isotopic variability among minerals composing the Boulder Creek Granodiorite, and we constrain fundamental characteristics of granite weathering important for quantifying the elemental and isotopic geochemistry of the reactor output. Nine Ca-bearing minerals display an 8.80‰ range of δ44/40Ca values and a 0.51‰ range of δ44/42Ca values. Three Mg-bearing minerals display a 1.53‰ range of δ26/24Mg values. These ranges expressed at the mineralogical scale are higher than the ranges thus far reported for bulk igneous rocks. Most of the δ44/40Ca variability reflects 40Ca enrichment in K-feldspar, and to a lesser extent, biotite, due to the radioactive decay of 40K over the 1.7 Ga age of the rock, whereas the entire range of δ44/42Ca values reflects mass-dependent isotope fractionation during igneous differentiation and crystallization. The range of δ26/24Mg values may represent either fractionation during the chloritization of biotite or interaction of the Boulder Creek Granodiorite with Mg-rich metamorphic fluids having low δ26/24Mg values.The elemental and isotopic composition of the reactor output varied substantially during the experiment. We synthesize the mineralogical and fluid data using coupled mass-conservation equations solved at non-steady-state. Model calculations reveal an intricate balance between increasing specific surface area and decreasing mineral concentrations. While surface area normalized dissolution rate constants were time-invariant, specific surface area increased as a power-law function of time through positive feedbacks between mechanical disaggregation, chemical dissolution, and mineral depletion. Variations in dissolved δ44/40Ca, δ44/42Ca, and δ26/24Mg values reflect conservative mixing rather than fractionation. Apatite and calcite initially control δ44/40Ca and δ44/42Ca values, followed by biotite, titanite, epidote, hornblende, and plagioclase. The release of radiogenic 40Ca clearly defines the period where biotite dissolution dominates. The brucite layer of chlorite initially controls δ26/24Mg values, followed by biotite, the TOT layer of chlorite, and hornblende. Through direct isotopic tracking, these results demonstrate that trace minerals, such as apatite and calcite in the case of Ca and brucite in the case of Mg, dominate elemental release during the incipient stages of granite weathering. The results further show that biotite dissolution dominates the middle stages of granite weathering and that plagioclase dissolution only becomes important during relatively late stages. The Ca and Mg isotope variations associated with these stages are distinct and potentially resolvable in soil mineral weathering studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号