首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   14篇
  国内免费   3篇
测绘学   2篇
大气科学   8篇
地球物理   46篇
地质学   51篇
海洋学   11篇
天文学   26篇
自然地理   13篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   10篇
  2014年   7篇
  2013年   9篇
  2012年   7篇
  2011年   5篇
  2010年   5篇
  2009年   9篇
  2008年   4篇
  2007年   5篇
  2006年   4篇
  2005年   5篇
  2004年   4篇
  2003年   5篇
  2002年   3篇
  2001年   6篇
  1999年   4篇
  1998年   2篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1985年   4篇
  1984年   6篇
  1983年   6篇
  1982年   4篇
  1980年   4篇
  1979年   1篇
  1978年   5篇
  1977年   4篇
  1976年   1篇
  1974年   2篇
  1973年   3篇
  1969年   1篇
  1957年   1篇
  1898年   2篇
排序方式: 共有157条查询结果,搜索用时 31 毫秒
61.
Complexities inherent to large‐scale modern civil structures pose many challenges in the design of feedback structural control systems for dynamic response mitigation. With the emergence of low‐cost sensors and control devices creating technologies from which large‐scale structural control systems can deploy, a future control system may contain hundreds, or even thousands, of such devices. Key issues in such large‐scale structural control systems include reduced system reliability, increasing communication requirements, and longer latencies in the feedback loop. To effectively address these issues, decentralized control strategies provide promising solutions that allow control systems to operate at high nodal counts. This paper examines the feasibility of designing a decentralized controller that minimizes the ?? norm of the closed‐loop system. ?? control is a natural choice for decentralization because imposition of decentralized architectures is easy to achieve when posing the controller design using linear matrix inequalities. Decentralized control solutions are investigated for both continuous‐time and discrete‐time ?? formulations. Numerical simulation results using a 3‐story and a 20‐story structure illustrate the feasibility of the different decentralized control strategies. The results also demonstrate that when realistic semi‐active control devices are used in combination with the decentralized ?? control solution, better performance can be gained over the passive control cases. It is shown that decentralized control strategies may provide equivalent or better control performance, given that their centralized counterparts could suffer from longer sampling periods due to communication and computation constraints. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
62.
Wind flow has been studied in situations where it encounters porous and solid windbreaks, but there has been a lack of research exploring turbulent wind dynamics around and in the lee of real vegetation elements. In dryland contexts, sparse vegetation plays an important role in modulating both the erosivity of the wind and the erodibility of surfaces. Therefore, understanding the interactions between wind and vegetation is key for improving wind erosion modelling in desert landscapes. In this study, turbulent wind flow around three typical dryland vegetation elements (a grass clump, a shrub, and a tree) was examined in Namibia using high‐frequency (10 Hz) sonic anemometry. Spatial variations in mean wind velocity, as well as Reynolds stresses and coherent turbulent structures in the flow, were compared and related to the porosities and configurations of the study elements. A shelter parameter, originally proposed by Gandemer ( 1979 , Journal of Wind Engineering and Industrial Aerodynamic 4 : 371–389), was derived to describe the combined impact of the different elements on the energy and variability of horizontal wind flow. Wind velocity was reduced by 70% in the immediate lee of the grass and 40% in the lee of the shrub, but velocity recovered exponentially to equilibrium over the same relative distance in both cases (~9 element heights downwind). Quadrant analysis of the high‐frequency wind flow data revealed that the grass clump induced a small recirculation zone in its lee, whereas the shrub did not. Also, higher Reynolds shear stress and higher ‘flow positivity magnitude’ [ratio of Q1 (outward interaction) and Q4 (sweep) quadrants to Q2 (ejection) and Q3 (inward interaction) quadrants] was generally observed in the wake of the grass. These differences arose because the porosity of the grass clump (53%) was lower than the porosity of the shrub (69%), and thus bleed flow through the shrub was more significant. The bluff‐body behaviour of the grass resulted in a more intense and more extensive sheltering effect than the shrub, which implies that overall sediment transport potential is lower in the wake of the grass. The tree displayed a different wake structure to the grass and shrub, owing to the elevation of its crown. A ‘bottom gap’ effect was observed, whereby wind velocities increased possibly due to streamline compression in the gap between the ground and the underside of the tree crown. Differences in flow momentum between the bottom gap and the low‐pressure leeward region of the crown are a probable explanation for the formation of a large recirculation vortex. The bottom gap effect led to decreased sheltering up to three tree heights downwind, but the surface became increasingly protected by the frontal impact of the crown over a further eight tree heights downwind (~30 m). The extraction of momentum from the air by the tree therefore resulted in a far more extensive sheltering effect compared to the grass and shrub. This study represents an important investigation of the impact of different vegetation types on turbulent wind flow, and results can be integrated as parameterizations into spatial sediment transport models that explore landscape‐scale change on semi‐vegetated desert surfaces. Copyright © 2016 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   
63.
The 168 m-thick Shiant Isles Main Sill is a composite body, dominated by an early, 24 m-thick, picrite sill formed by the intrusion of a highly olivine-phyric magma, and a later 135 m-thick intrusion of olivine-phyric magma that split the earlier picrite into a 22 m-thick lower part and a 2 m-thick upper part, forming the picrodolerite/crinanite unit (PCU). The high crystal load in the early picrite prevented effective settling of the olivine crystals, which retain their initial stratigraphic distribution. In contrast, the position of the most evolved rocks of the PCU at a level ~80% of its total height point to significant accumulation of crystals on the floor, as evident by the high olivine mode at the base of the PCU. Crystal accumulation on the PCU floor occurred in two stages. During the first, most of the crystal load settled to the floor to form a modally and size-sorted accumulation dominated by olivine, leaving only the very smallest olivine grains still in suspension. The second stage is recorded by the coarsening-upwards of individual olivine grains in the picrodolerite, and their amalgamation into clusters which become both larger and better sintered with increasing stratigraphic height. Large clusters of olivine are present at the roof, forming a foreshortened mirror image of the coarsening-upwards component of the floor accumulation. The coarsening-upwards sequence records the growth of olivine crystals while in suspension in a convecting magma, and their aggregation into clusters, followed by settling over a prolonged period (with limited trapping at the roof). As olivine was progressively lost from the convecting magma, crystal accumulation on the (contemporaneous) floor of the PCU was increasingly dominated by plagioclase, most likely forming clusters and aggregates with augite and olivine, both of which form large poikilitic grains in the crinanite. While the PCU is unusual in being underlain by an earlier, still hot, intrusion that would have enhanced any driving force for convection, we conclude from comparison with microstructures in other sills that convection is likely in tabular bodies >100 m thickness.  相似文献   
64.
In coastal Louisiana, the development of large-scale freshwater diversion projects has led to controversy over their effects on oyster resources. Using controlled laboratory experiments in combination with a field study, we examined the effects of pulsed freshwater events (freshet) of different magnitude, duration, and rate of change on oyster resources. Laboratory and field evidence indicate that low salinity events (<5 psu) decreased Perkinsus marinus infection intensities. Furthermore, when salinity was low (<5 psu), parasite infection intensities continued to decrease even as temperatures exceeded 20°C. At the same time, oyster growth was positively correlated with salinity. To maximize oyster production, data indicate that both low and high salinity events will be necessary.  相似文献   
65.
We report on the results of a time-series photometric survey of NGC 2362, carried out using the CTIO 4-m Blanco telescope and Mosaic-II detector as part of the Monitor project. Rotation periods were derived for 271 candidate cluster members over the mass range  0.1 ≲ M /M≲ 1.2  . The rotation period distributions show a clear mass-dependent morphology, qualitatively similar to that in NGC 2264, as would be expected from the age of this cluster. Using models of angular momentum evolution, we show that angular momentum losses over the ∼1–5 Myr age range appear to be needed in order to reproduce the evolution of the slowest rotators in the sample from the ONC to NGC 2362, as found by many previous studies. By incorporating Spitzer IRAC mid-infrared (mid-IR) measurements, we found that three to four objects showing mid-IR excesses indicative of the presence of circumstellar discs were all slow rotators, as would be expected in the disc regulation paradigm for early pre-main-sequence angular momentum evolution, but this result is not statistically significant at present, given the extremely limited sample size.  相似文献   
66.
Historically, large volumes of fresh water from the Everglades reached Florida Bay in the form of overland sheet flow. South Florida's extensive canal system has diverted fresh water from its historic course, resulting in shorter hydroperiods and higher salinities than would have occurred in an unaltered system. The mixing zone between the freshwater Everglades and euryhaline Florida Bay is primarily characterized as a dwarf red mangrove forest. The small, demersal fishes found in this habitat are an important food source for a variety of predators and are excellent bioindicators for both short-term and long-term perturbations in the system. I examine the effect of fluctuating water level, salinity, and temperature on this fish community in order to better understand the impact water diversion has had on the ecotone. Fish were collected at four sites within the ecotone over a t-yr period using a 9-m2 drop trap. Principal components analysis was used to generate 10 composite variables (PCs) from a temporal array of 59 physicochemical variables. These composite variables were used in regression analyses to evaluate spatial and temporal changes in the fish community. Regression analysis indicated fish density was significantly related to short-term and long-term changes in water level and with long-term temperature variation (r2=0.50). An ANOVA of density between sites supports the regression results, indicating that sites with longer hydroperiod had higher density than sites with shorter hydroperiod. The impact of changes in density on biomass was reflected by regression analysis, which indicated that increased water level and decreased variability in depth were correlated with higher biomass (r2=0.61). Biomass was also influenced by changes in the salinity regime, presumably through increases in individual fish body size or through a shift in the community toward heavier-bodied fish species. An ANOVA of biomass between sites indicates sites with longer freshwater periods had higher biomass than sites with shorer freshwater periods. The first two axes of a detrended correspondence analysis on community biomass explained 59.2% of the variance in the community and supported the hypothesis that salinity was a primary determinant of community structure. These results indicate historic changes in water deliver could have altered the mangrove fish community, thereby lowering prey availability for higher trophic levels.  相似文献   
67.
Wind erosion is a key component of land degradation in vulnerable dryland regions. Despite a wealth of studies investigating the impact of vegetation and windbreaks on windflow in controlled wind‐tunnel and modelling environments, there is still a paucity of empirical field data for accurately parameterizing the effect of vegetation in wind and sediment transport models. The aim of this study is to present a general parameterization of wind flow recovery in the lee of typical dryland vegetation elements (grass clumps and shrubs), based on their height (h ) and optical porosity (θ ). Spatial variations in mean wind velocity around eight isolated vegetation elements in Namibia (three grass clumps and five shrubs) were recorded at 0.30 m height, using a combination of sonic and cup anemometry sampled at a temporal frequency of 10 seconds. Wind flow recovery in the lee of the elements was parameterized in an exponential form, . The best‐fit parameters derived from the field data were u 0 = u ref(0.0146θ ? 0.4076) and b = 0.0105θ + 0.1627 . By comparing this parameterization to existing models, it is shown that wind recovery curves derived from two‐dimensional wind fence experiments may not be suitable analogues for describing airflow around more complex, three‐dimensional forms. Field‐derived parameterizations such as the one presented here are a crucial step for connecting plant‐scale windflow behaviour to dryland bedform development at landscape scales. © 2016 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
68.
青藏高原东北部天然地震探测与岩石圈深部特征   总被引:10,自引:1,他引:10       下载免费PDF全文
为了研究青藏高源东北部块体构造变形的深部驱动机制,笔者对青藏高原东北部的天然地震观测数据进行地震层析反演,并结合同一剖面的接收函数及各向异性结果进行讨论。介绍了ACH方法的基本原理,论述了由于印度板块向北俯冲的强大的持续作用力,造就了NE向俯冲到柴达木盆地之下的昆仑造山带,并发现在巴颜喀拉地体下方壳幔内的仰冲活动。壳幔内的低速体十分显著地出现在阿尼玛卿缝合线以北,深度可达300km。推断该低速体可能与昆仑断裂的深层的剪切作用有关。深部资料显示该区莫霍界面由北向南逐渐加深,这与青藏高原东北部的岩石圈减薄现象一致,而且与印度板块向北运动的远程效应有关。另外,地震层析结果及各向异性分析也支持青藏高原东北部主应力方向转为NE向的观点。  相似文献   
69.
Jerome Apt  Johnny Leung 《Icarus》1982,49(3):427-437
A search was made for periodic fluctuations in the thermal brightness temperatures recorded by the Pioneer Venus orbiter's infrared radiometer. Data were averaged in 10 × 10° latitude-longitude bins for each of the 72 days the instrument was in operation. This time series of thermal brightness temperatures was then analyzed to determine the amplitude of fluctuations at periods from 2 to 64 days at four levels in the atmosphere (at the cloud tops and at approximately 70, 80, and 90 km). The amplitude of such fluctuations is small at equatorial latitudes and increases to a maximum at 60–70° latitude at most altitudes. The period of the highest amplitude fluctuation is 5.3±0.4 days (at all altitudes) except at 70–80°, where a 2.9-day period which appears to correspond to the polar dipole dominates the cloud-top channel. The amplitude of the periodic fluctuations is a maximum at the cloud tops, decreasing to a minimum at the 80-km channel, and increasing again at the 90-km channel.  相似文献   
70.
Our recent model for solar constant secular changes suggests that over extended time intervals, a positive correlation of the solar constant with solar activity results. The positive correlation in this model is not associated with the direct result of active region, which may be in a close energy balance over their lifetimes, but rather is associated with global features - bright global faculae. These exist as both polar and network features on the solar disk. The high latitude faculae enable the solar constant to peak prior to sunspot maximum. Recent solar constant observations support the model's general trend. Using this model, we now calculate a proxy solar constant for: (1) the past four centuries, based upon the sunspot record, (2) the past nine centuries, based upon 14C observations and their relation to solar activity, and (3) the next decade, based upon a dynamo theory model for the solar cycle. The proxy solar constant data is tabulated as it may be useful for climate modelers studying global climate changes. This could be helpful in disentangling possible solar influences from any anthropogenic changes associated with trace gas increases in the terrestrial atmosphere. An important point for climate modelers to consider in fixing climate model parameters, is that the Sun has been relatively active and thus bright in the latter half of the 20th century, compared with the past few centuries.This paper was presented at the third meeting of the Solar Cycle Workshop, held in Sydney, Australia, January 9–13, 1989.Physics Dept., Univ. of Northern Colorado, U.S.A.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号