首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   4篇
  国内免费   6篇
测绘学   6篇
大气科学   5篇
地球物理   32篇
地质学   119篇
海洋学   2篇
天文学   6篇
综合类   5篇
自然地理   8篇
  2022年   5篇
  2021年   4篇
  2020年   8篇
  2019年   4篇
  2018年   13篇
  2017年   17篇
  2016年   11篇
  2015年   13篇
  2014年   13篇
  2013年   21篇
  2012年   14篇
  2011年   8篇
  2010年   10篇
  2009年   5篇
  2008年   4篇
  2007年   4篇
  2006年   10篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   3篇
  1991年   1篇
  1987年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有183条查询结果,搜索用时 31 毫秒
81.
Primary igneous monazite from the Polokongka La granite of the Tso Morari complex in the western Himalayas has been partially replaced by a three-layered corona of metamorphic fluor-apatite, allanite + U- and Th-bearing phases (huttonite + brabantite), and epidote. The alteration is related to high-pressure amphibolite-facies (10–11 kbar and 587–695 °C) fluid-induced retrogression of the ultra-high-pressure granite during exhumation after India–Asia collision. The corona textures can be explained by pseudomorphic partial replacement of the original monazite to apatite and allanite via a fluid-mediated coupled dissolution–reprecipitation process. Mass balance calculations using the volume proportions and compositions of coronal minerals show that the REE, U, Th, Pb, Ba and P were conserved and not transported outside the alteration corona. The formation of fluor-apatite, allanite, huttonite and coffinite from monazite and the immobility of REE, U and Th require an influx of alkali- and F-bearing, Ca-rich fluid having high Ca/Na into the corona. We are aware of only two other occurrences of such alteration textures, and these have several similarities in terms of geodynamic setting and P–T histories of the host rocks. We suggest that there may be a common mechanism of exhumation style, and source and composition of fluids during retrogression of granitoid rocks in collisional orogens and that such breakdown textures can be used to identify metagranites that have experienced high-P metamorphism in continental collision zones, which is otherwise difficult to constrain due to the high variance of the mineral assemblages in these rocks.  相似文献   
82.
The Humr Akarim and Humrat Mukbid plutons, in the central Eastern Desert of Egypt, are late Neoproterozoic post-collisional alkaline A-type granites. Humr Akarim and Humrat Mukbid plutonic rocks consist of subsolvus alkali granites and a subordinate roof facies of albite granite, which hosts greisen and Sn–Mo-mineralized quartz veins; textural and field evidence strongly suggest the presence of late magmatic F-rich fluids. The granites are Si-alkali rich, Mg–Ca–Ti poor with high Rb/Sr (20–123), and low K/Rb (27–65). They are enriched in high field strength elements (e.g., Nb, Ta, Zr, Y, U, Th) and heavy rare earth elements (La n /Yb n ?=?0.27–0.95) and exhibit significant tetrad effects in REE patterns. These geochemical attributes indicate that granite trace element distribution was controlled by crystal fractionation as well as interaction with fluorine-rich magmatic fluids. U–Pb SHRIMP zircon dating indicates an age of ~630–620?Ma but with abundant evidence that zircons were affected by late corrosive fluids (e.g., discordance, high common Pb). εNd at 620?Ma ranges from +3.4 to +6.8 (mean?=?+5.0) for Humr Akarim granitic rocks and from +4.8 to +7.5 (mean?=?+5.8) for Humrat Mukbid granitic rocks. Some slightly older zircons (~740?Ma, 703?Ma) may have been inherited from older granites in the region. Our U–Pb zircon data and Nd isotope results indicate a juvenile magma source of Neoproterozoic age like that responsible for forming most other ANS crust and refute previous conclusions that pre-Neoproterozoic continental crust was involved in the generation of the studied granites.  相似文献   
83.
The horizontal-to-vertical spectral ratio technique has applied to detect the fundamental frequency at the sites of ambient noise recordings for New Domiat city. Noise measurements are acquired at 90 of sites for 1?h of continuous recording with a sampling rate of 100?Hz. Then, these data are processed following to SESAME project scheme. The presence of deep sedimentary basin in the Nile Delta suggests that the site response should be important. Consequently, the obtained fundamental frequency has lower values (0.2?C0.6?Hz). However, low-frequency ground motions attenuate more gradually with distance and can excite vibrations in large engineered structures, such as tall buildings and long bridges. There is hazardous threat even from the distant earthquakes originated from Mediterranean convergence zone for the structures in the city. It is recommended that the results of this study must be taken into consideration from civil engineering point of view before construction of civil engineering structures at this part.  相似文献   
84.
We perform a strong ground motion simulation using a modified semi-empirical technique (Midorikawa in Tectonophysics 218:287–295, 1993), with frequency-dependent radiation pattern model. Joshi et al. (Nat Hazards 71:587–609, 2014) have modified the semi-empirical technique to incorporate the modeling of strong motion generation areas (SMGAs). A frequency-dependent radiation pattern model is applied to simulate high-frequency ground motion more precisely. Identified SMGAs (Kurahashi and Irikura in Earth Planets Space 63:571–576, 2011) of the 2011 off the Pacific coast of Tohoku earthquake (M w  = 9.0) were modeled using this modified technique. We analyzed the effect of changing seismic moment values of SMGAs on the simulated acceleration time series. Final selection of the moment values of SMGAs is based on the root-mean-square error (RMSE) of waveform comparison. Records are simulated for both frequency-dependent and constant radiation pattern function. Simulated records for both cases are compared with observed records in terms of peak ground acceleration, peak ground velocity and pseudo-acceleration response spectra at different stations. Comparison of simulated and observed records in terms of RMSE suggests that the method is capable of simulating record, which matches in a wide frequency range for this earthquake and bears realistic appearance in terms of shape and strong motion parameters. The results confirm the efficacy and suitability of rupture model defined by five SMGAs for the developed modified technique.  相似文献   
85.
The semiempirical approach based on envelope summation method given by Midorikawa (Tectonophysics 218:287–295, 1993) has been modified in this paper for modeling of strong motion generation areas (SMGAs). Horizontal components of strong ground motion have been simulated using modifications in the semiempirical approach given by Joshi et al. (Nat Hazard 71:587–609, 2014). Various modifications in the technique account for finite rupture source, layering of earth, componentwise division of energy and frequency-dependent radiation pattern. In this paper, SMGAs of the Uttarkashi earthquake have been modeled. Two different isolated wave packets in the recorded accelerogram have been identified from recorded ground motion, which accounts for two different SMGAs in the entire rupture plane. The approximate locations of SMGAs within the rupture plane were estimated using spatio-temporal variation of 77 aftershocks. Source parameters of each SMGA were calculated from theoretical and observed source displacement spectra computed from two different wave packets in the record. The final model of rupture plane responsible for the Uttarkashi earthquake consists of two SMGAs, and the same has been used to simulate horizontal components of acceleration records at different station using modified semiempirical technique. Comparison of the observed and simulated acceleration records in terms of root mean square error confirms the suitability of the final source model for the Uttarkashi earthquake.  相似文献   
86.
The Kangan aquifer (KA) is located beneath the Kangan gas reservoir (KGR), 2,885 m below the ground surface. The gas reservoir formations are classified into nine non-gas reservoir units and eight gas reservoir units based on the porosity, water and gas saturation, lithology, and gas production potential using the logs of 36 production wells. The gas reservoir units are composed of limestone and dolomite, whereas the non-gas reservoir units consist of compacted limestone and dolomite, gypsum and shale. The lithology of KA is the same as KGR with a total dissolved solid of 333,000 mg/l. The source of aquifer water is evaporated seawater. The static pressure on the Gas–Water Contact (GWC) was 244 atm before gas production, but it has continuously decreased during 15 years of gas production, resulting in a 50 m uprising of the GWC and the expansion of KA water and intergranular water inside the gas reservoir. The general flow direction of the KA is toward the northern coast of the Persian Gulf due to the migration of water to the overlying formations via a trust fault. The KA is a gas-capped deep confined aquifer (GCDCA) with special characteristics differing from a shallow confined aquifer. The main characteristics of a GCDCA are unsaturated intergranular water below the confining layers, no direct contact of the water table (GWC) with the confining layers, no vertical flow via the cap rock, permanent uprising of the GWC during gas production, and permanent descend of GWC during water exploitation.  相似文献   
87.
Three sets of Landsat? satellite images for the years 1993, 1998, and 2003 show that the sand dunes at the southwestern Desert of Egypt are generally moving towards southeast direction with a mean annual creeping speed over ground attaining 15 m/year. The manual-stickled field measurements show that the net annual extension of the longitudinal dunes in the coastal area is between 4 and 5 m/year, while the inland longitudinal dunes showed a net movement ranging between 5 and 6 m/year. Seasonal variations of drift potential and sand movement refer to a strongly high energy wind desert environment in the spring season, high energy wind desert environment in the summer season, and relatively high to intermediate in the autumn and winter seasons, respectively. The total annual estimated volume of transported sand which falls down into Lake Nasser basin attains 16,225,808 m3 as calculated by Bagnold's equation and quantities of sand collected from the sand traps. Comparing this value with the total volume of Lake Nasser Basin, which attains 120?×?109 m3, we can conclude that the sand sheets or sand accumulations may represent serious natural hazards to Lake Nasser in some locations. However, the sand drifting towards the lake may be obstructed by high contour topography hindrance, and the mean grain size of the sand sheets is bigger than 0.25 mm, which needs high wind velocity more than 4 m/s. In addition, the direction of the prevailing wind is N-NNW to S-SSE, and this direction sometimes is parallel to Lake Nasser in some places according to the meandering of the lake. The total lengths of hazardous areas along the western bank of Lake Nasser, which receive the most amounts of the drifted sands, attain 43.6 km only.  相似文献   
88.
The Neoproterozoic Atud diamictite in Wadi Kareim and Wadi Mobarak in the Eastern Desert of Egypt and the Nuwaybah formation in NW Saudi Arabia consist of poorly sorted, polymictic breccia, with clasts up to 1 m of granitoid, quartz porphyry, quartzite, basalt, greywacke, marble, arkose, and microconglomerate in fine-grained matrix. Stratigraphic relations indicate that the diamictite was deposited in a marine environment. Integrated field investigation, petrographic study and U–Pb SHRIMP zircon ages demonstrate that the Atud and Nuwaybah are correlative. The distribution of zircon ages indicate that ~750 Ma ages are dominant with a significant component of older materials, characterized by minor Mesoproterozoic and more abundant Paleoproterozoic and Neoarchean ages. Some matrix and metasedimentary clast zircons yield ages that are a few 10s of Ma younger than the age of the youngest clast (754 ± 15 Ma), suggesting Atud/Nuwaybah diamictite deposition ~750 Ma or slightly later, broadly consistent with being deposited during the Sturtian glaciation (740–660 Ma). The Paleoproterozoic and Neoarchean clasts have no source within the ensimatic Arabian–Nubian Shield. The distribution of the pre-Neoproterozoic ages are similar to the distribution of the pre-Neoproterozoic ages in Yemen and Saharan Metacraton, suggesting that these clasts have been transported hundreds of kilometers, maybe by ice-rafting. The Atud diamictite may represent important evidence for Cryogenian “Snowball Earth” in the Arabian–Nubian Shield.  相似文献   
89.
Eight shallow seismic refraction profiles were conducted at the proposed KACST expansion site, northwest of Riyadh, to estimate the near-surface geotechnical parameters for construction purposes. Both compressional (P) and shear (S) waves were acquired, processed, and interpreted using “time-term” technique which is a combination of linear least squares and delay time analysis to invert the first arrivals for a velocity section. The most important geotechnical near-surface parameters such as stress ratio, Poisson’s ratio, material index, concentration index, N value, and foundation material-bearing capacity are calculated. The results of these seismic measurements were compared with the results of borehole report in the project area in terms of number of layers, the lithological content, thicknesses, and N values of rock quality designation. A good matching between the results was observed particularly at the sites of boreholes.  相似文献   
90.
Results about the standard photometric parameters of four galaxies are given. The equivalent and the integrated parameters defined according to de Vaucouleurs are listed. Effective values of the abovementioned ingredients, the reduced luminosity profiles and the dimensions defined by the quartiles are also given.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号