首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   12篇
  国内免费   3篇
测绘学   3篇
大气科学   6篇
地球物理   30篇
地质学   51篇
海洋学   4篇
天文学   6篇
综合类   4篇
自然地理   3篇
  2023年   2篇
  2022年   1篇
  2021年   8篇
  2020年   7篇
  2019年   3篇
  2018年   13篇
  2017年   8篇
  2016年   10篇
  2015年   6篇
  2014年   11篇
  2013年   7篇
  2012年   1篇
  2011年   4篇
  2009年   5篇
  2008年   5篇
  2007年   2篇
  2005年   2篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  1994年   1篇
  1986年   1篇
  1984年   1篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有107条查询结果,搜索用时 187 毫秒
21.
Natural Hazards - Risk perception plays a vital part in flood risk management and mitigation strategies. Therefore, this study aims at first to measure the risk perception of the vulnerable...  相似文献   
22.
23.
The shallow alluvial aquifers of the delta plains and flood plains of Bangladesh, comprises about 70% of total land area are mostly affected by elevated concentrations of arsenic (As) in groundwater exposing a population of more than 35 million to As toxicity. Geochemical studies of shallow alluvial aquifer in the Meghna flood plain show that the uppermost yellowish grey sediment is low in As (1.03 mg/kg) compared to the lower dark grey to black sediment (5.24 mg/kg) rich in mica and organic matter. Sequential extraction data show that solid phase As bound to poorly crystalline and amorphous metal (Fe, Mn, Al)-oxyhydroxides is dominant in the grey to dark grey sediment and reaches its maximum level (3.05 mg/kg) in the mica rich layers. Amount of As bound to sulphides and organic matter also peaks in the dark grey to black sediment. Vertical distributions of major elements determined by X-ray fluorescence (XRF) show that iron (Fe2O3), aluminum (Al2O3) and manganese (MnO) follow the general trend of distribution of As in the sediments. Concentrations of As, Mn, Fe, HCO3 , SO4 2− and NO3 in groundwater reflect the redox status of the aquifer and are consistent with solid phase geochemistry. Mineralogical analysis by X-ray diffraction (XRD) and scanning electron microscopy (SEM) fitted with energy dispersive X-ray spectrometer (EDS) revealed dominance of crystalline iron oxides and hydroxides like magnetite, hematite and goethite in the oxidised yellowish grey sediment. Amorphous Fe-oxyhydroxides identified as grain coating in the mica and organic matter rich sediment suggests weathering of biotite is playing a critical role as the source of Fe(III)-oxyhydroxides which in turn act as sink for As. Presence of authigenic pyrite in the dark grey sediment indicates active reduction in the aquifer.  相似文献   
24.
25.
The hyporheic zone of riverbed sediments has the potential to attenuate nitrate from upwelling, polluted groundwater. However, the coarse‐scale (5–10 cm) measurement of nitrogen biogeochemistry in the hyporheic zone can often mask fine‐scale (<1 cm) biogeochemical patterns, especially in near‐surface sediments, leading to incomplete or inaccurate representation of the capacity of the hyporheic zone to transform upwelling NO3?. In this study, we utilised diffusive equilibrium in thin‐films samplers to capture high resolution (cm‐scale) vertical concentration profiles of NO3?, SO42?, Fe and Mn in the upper 15 cm of armoured and permeable riverbed sediments. The goal was to test whether nitrate attenuation was occurring in a sub‐reach characterised by strong vertical (upwelling) water fluxes. The vertical concentration profiles obtained from diffusive equilibrium in thin‐films samplers indicate considerable cm‐scale variability in NO3? (4.4 ± 2.9 mg N/L), SO42? (9.9 ± 3.1 mg/l) and dissolved Fe (1.6 ± 2.1 mg/l) and Mn (0.2 ± 0.2 mg/l). However, the overall trend suggests the absence of substantial net chemical transformations and surface‐subsurface water mixing in the shallow sediments of our sub‐reach under baseflow conditions. The significance of this is that upwelling NO3?‐rich groundwater does not appear to be attenuated in the riverbed sediments at <15 cm depth as might occur where hyporheic exchange flows deliver organic matter to the sediments for metabolic processes. It would appear that the chemical patterns observed in the shallow sediments of our sub‐reach are not controlled exclusively by redox processes and/or hyporheic exchange flows. Deeper‐seated groundwater fluxes and hydro‐stratigraphy may be additional important drivers of chemical patterns in the shallow sediments of our study sub‐reach. © 2015 The Authors. Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   
26.
Sequential extraction procedures are widely used to characterize the different operational fractions with different potential toxicity of metals in environmental solid samples. The present work describes the application of different analytical approaches for sequential extraction of aluminum to evaluate its mobility, availability, and persistent chemical forms in sediment samples of different fresh water ecosystems (lake, canal, and river). The conventional BCR three‐stage sequential extraction procedure (C‐BCR) was modified at each stage, by applying ultrasonic device (U‐BCR), in order to shorten the required shaking time of 16 h for each three steps (excluding the hydrogen peroxide digestion in step 3, which was not performed with ultrasonic bath), could be completed in 40, 50, and 45 min, respectively. The aluminum in all extracts were determination by atomic absorption spectrometry using nitrous oxide – acetylene flame. The accuracy of results obtained from C‐BCR and proposed U‐BCR was verified with literature reported values of certified sediment sample (BCR 701). The overall recoveries of aluminum obtained by proposed U‐BCR were found in the range of 96.7–113% of those values obtained with C‐BCR for all fractions. Use of ultrasonic device, provided a large saving in extraction time relative to conventional shaking. It was observed that major part of Al in real sediment samples (80–83% of total Al) were bound to residual fraction. The acid soluble fraction of aluminum extracted by 0.11 mol/L CH3COOH has good correlation with aluminum content in corresponding water samples of each ecosystem.  相似文献   
27.
In this work, the X-ray Photoelectron Spectroscopy (XPS) technique is utilized to analyze the surface chemical composition of particulate matter (PM) which was collected from various locations at Jeddah, Saudi Arabia. The main elements found on the surface of PM are carbon (C), oxygen (O) and silicon (Si) with combined percentage of 89.4–94.9 while traces of nitrogen (N), calcium (Ca), aluminum (Al), sodium (Na), chlorine (Cl), manganese (Mg), and sulfur (S) were also present. The analyzed XPS chemical state of C, O and Si was further used to determine their bonding with other elements occurring over the surface of PM. Carbon was found in the form of carbides (18.86%), fluorides (2.39%) and carbonates (78.75%); oxygen was observed as oxides (21.05%) and hydroxides (73.42%) of other metals; and silicon was detected as silicones (12.16%), nitrides (82.53%) and silicates (5.25%). The particle size of a PM is also of great concern for health issues, and thus has been investigated by the Field Emission Scanning Electron Microscope (FESEM). The Energy Dispersive X-ray Spectroscopy (EDS) was employed for cross verification of detected elements by XPS.  相似文献   
28.
29.
30.
Doklady Earth Sciences - The research work involves rock physics modeling and reservoir characterization of Suliman fold belt to sulamain fold depression. This area is a brighter zone for...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号