首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   3篇
测绘学   2篇
大气科学   3篇
地球物理   37篇
地质学   22篇
海洋学   2篇
天文学   3篇
自然地理   5篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   7篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2002年   1篇
  2001年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1991年   2篇
  1990年   1篇
  1987年   1篇
  1983年   1篇
  1973年   1篇
  1955年   1篇
  1954年   2篇
  1953年   4篇
  1952年   3篇
  1951年   1篇
  1950年   2篇
  1949年   4篇
  1948年   3篇
排序方式: 共有74条查询结果,搜索用时 15 毫秒
31.
We introduce a new ensemble-based Kalman filter approach to assimilate GRACE satellite gravity data into the WaterGAP Global Hydrology Model. The approach (1) enables the use of the spatial resolution provided by GRACE by including the satellite observations as a gridded data product, (2) accounts for the complex spatial GRACE error correlation pattern by rigorous error propagation from the monthly GRACE solutions, and (3) allows us to integrate model parameter calibration and data assimilation within a unified framework. We investigate the formal contribution of GRACE observations to the Kalman filter update by analysis of the Kalman gain matrix. We then present first model runs, calibrated via data assimilation, for two different experiments: the first one assimilates GRACE basin averages of total water storage and the second one introduces gridded GRACE data at \(5^\circ\) resolution into the assimilation. We finally validate the assimilated model by running it in free mode (i.e., without adding any further GRACE information) for a period of 3 years following the assimilation phase and comparing the results to the GRACE observations available for this period.  相似文献   
32.
33.
The groundwater abstracted at a well field near the Yamuna River in Central Delhi, India, has elevated ammonium (NH4 +) concentrations up to 35 mg/L and arsenic (As) concentrations up to 0.146 mg/L, constituting a problem with the provision of safe drinking and irrigation water. Infiltrating sewage-contaminated river water is the primary source of the NH4 + contamination in the aquifer, leading to reducing conditions which probably trigger the release of geogenic As. These conclusions are based on the evaluation of six 8–27-m deep drillings, and 13 surface-water and 69 groundwater samples collected during seven field campaigns (2012–2013). Results indicate that losing stream conditions prevail and the river water infiltrates into the shallow floodplain aquifer (up to 16 m thickness), which consists of a 1–2-m thick layer of calcareous nodules (locally known as kankar) overlain by medium sand. Because of its higher hydraulic conductivity (3.7 × 10?3 m/s, as opposed to 3.5 × 10?4 m/s in the sand), the kankar layer serves as the main pathway for the infiltrating water. However, the NH4 + plume front advances more rapidly in the sand layer because of its significantly lower cation exchange capacity. Elevated As concentrations were only observed within the NH4 + plume indicating a causal connection with the infiltrating reducing river water.  相似文献   
34.
35.
Hourglass sector zoning, and related polar overgrowths, are common features of metamorphic tourmaline, developing as a result of variations in element preference on the different growth surfaces. For sector-zoned crystals, three domains are present for each growth zone (c +, c and a), with compositional differences most distinct for Ca and Ti, and among c + and c sectors. Intersector differences vary, commonly showing decreasing fractionation from core to rim attributed to increasing metamorphic grade. Here we show that intersector element partitioning is temperature dependent and derive empirical geothermometers based on c + c and c + a partitioning of Ca and Ti. These thermometers are applicable over a range of temperatures and bulk-rock compositions. Intersector partitioning is not affected by re-equilibration and records and preserves complete T-histories of individual tourmaline grains from prograde to peak and on to retrograde growth. Information on element mobility is preserved by tourmaline composition, because intersector partitioning is independent of element concentration. These factors make intersector partitioning an ideal tool to elucidate the thermal history of tourmaline grains and thus their host environment and tourmaline’s refractory nature preserves these signatures even into the sedimentary record. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   
36.
Tidal and seasonal behaviour of the redox-sensitive trace metals Mn, Fe, Mo, U, and V have been investigated in the open-water column and shallow pore waters of the backbarrier tidal flats of the island of Spiekeroog (Southern North Sea) in 2002 and 2007. The purpose was to study the response of trace metal cycles on algae blooms, which are assumed to cause significant changes in the redox state of the entire ecosystem. Trace metal data were complemented by measurements of nutrients and enumeration of algae cells in 2007. Generally, Mn and V show a tidal cyclicity in the water column with maximum values during low tide which is most pronounced in summer due to elevated microbial activity in the sediments. Mo and U behave almost conservatively throughout the year with slightly increasing levels towards high tide. Exceptions are observed for both metals after summer algae blooms. Thus, the seasonal behaviour of the trace metals appear to be significantly influenced by productivity in the water column as the occurrence of algae blooms is associated with an intense release of organic matter (e.g. transparent exopolymer particles, TEP) thereby forming larger organic-rich aggregates. Along with elevated temperatures in summer, the deposition of such aggregates favours microbial activity within the surface sediments and release of DOC, nutrients and trace metals (Mn, Mo and V) during the degradation of the aggregates. Additionally, pronounced reducing conditions lead to the reduction of Mn(IV)-oxides and Fe(III)-(oxihydr)oxides, thereby releasing formerly scavenged compounds as V and phosphate. Therefore, pore-water profiles show significant enrichments in trace metals especially from July to September. Finally, the trace metals are released to the open water column via draining pore waters (esp. Mo, Mn, and V) and/or fixed in the sediment as sulphides (Fe, Mo) and bound to organic matter (U). Non-conservative behaviour of Mo in oxygenated seawater, first observed in the investigation area by Dellwig et al. (Geochim Cosmochim Acta 71:2745–2761, 2007a), was shown to be a recurrent phenomenon which is closely coupled to bacterial activity after the breakdown of algae blooms. In addition to the postulated fixation of Mo in oxygen-depleted micro-zones of the aggregates or by freshly formed organic matter, a direct removal of Mo from the water column by reduced sediment surfaces may also play an important role.  相似文献   
37.
Urban agriculture (UA) in Khartoum, Sudan, contributes to meeting the increasing food demand of the city's rapidly growing population, but its spatial extent, development over time and resource consumption are unknown. To fill this knowledge gap, we analyzed scenes captured by Landsat satellites in 1972, 1987 and 2000. For each dataset, we calculated the Normalized Difference Vegetation Index (NDVI) and classified all grid cells with NDVI values higher than one standard deviation above the mean as vegetated land. We also quantified agricultural vegetation on aerial photographs taken in 1958 and on a recent Google Earth image. The built-up area of the city was estimated for each point in time. Based on these spatial estimates, we computed water consumption by UA based on geographic, temporal and climatic datasets and official data on the cropping patterns of Khartoum State, using the Penman–Monteith equation to estimate crop water demands, and assuming a water use efficiency of 0.56.Urban agriculture increased from 8751 ha in 1972 to 13,249 ha today. In the municipal core zone, UA decreased from 4799 ha in 1958 to 2869 ha today. Along the Nile, UA persisted through time, whereas many urban irrigation schemes have been pushed into the periphery. The built-up area increased strongly and today exceeds the UA area 5.5-fold. Estimated crop water demand on UA land increased from 241 to 365 million m3 year?1 between 1972 and today.  相似文献   
38.
Purging influence on soil‐gas concentrations for volatile organic compounds (VOCs), as affected by sampling tube inner diameter and sampling depth (i.e., system volume) for temporary probes in fine‐grained soils, was evaluated at three different field sites. A macro‐purge sampling system consisted of a standard, hollow, 3.2‐cm outer diameter (OD) drive probe with a retractable sampling point attached to an appropriate length of 0.48‐cm inner diameter (ID) Teflon® tubing. The macro‐purge sampling system had a purge system volume of 24.5 mL at a 1‐m depth. In contrast, the micro‐purge sampling systems were slightly different between the field sites and consisted of a 1.27‐cm OD drive rod with a 0.10‐cm ID stainless steel tube or a 3.2‐cm OD drive rod with a 0.0254‐cm inner diameter stainless steel tubing resulting in purge system volumes of 1.2 and 7.05 mL at 1‐m depths, respectively. At each site and location within the site, with a few exceptions, the same contaminants were identified in the same relative order of abundances indicating the sampling of the same general soil atmosphere. However, marked differences in VOC concentrations were identified between the sampling systems, with micro‐purge samples having up to 27 times greater concentrations than their corresponding macro‐purge samples. The higher concentrations are the result of a minimal disturbance of the ambient soil atmosphere during purging. The minimal soil‐gas atmospheric disturbance of the micro‐purge sampling system allowed for the collection of a sample that is more representative of the soil atmosphere surrounding the sampling point. That is, a sample that does not contain an atmosphere that has migrated from distance through the geologic material or from the surface in response to the vacuum induced during purging soil‐gas concentrations. It is thus recommended that when soil‐gas sampling is conducted using temporary probes in fine‐grained soils, the sampling system use the smallest practical ID soil‐gas tubing and minimize purge volume to obtain the soil‐gas sample with minimal risk of leakage so that proper decisions, based on more representative soil‐gas concentrations, about the site can be made.  相似文献   
39.
Soil vapor extraction (SVE) is effective for removing volatile organic compound (VOC) mass from the vadose zone and reducing the potential for vapor intrusion (VI) into overlying and surrounding buildings. However, the relationship between residual mass in the subsurface and VI is complex. Through a series of alternating extraction (SVE on) and rebound (SVE off) periods, this field study explored the relationship and aspects of SVE applicable to VI mitigation in a commercial/light-industrial setting. The primary objective was to determine if SVE could provide VI mitigation over a wide area encompassing multiple buildings, city streets, and subsurface utilities and eliminate the need for individual subslab depressurization systems. We determined that SVE effectively mitigates offsite VI by intercepting or diluting contaminant vapors that would otherwise enter buildings through foundation slabs. Data indicate a measurable (5 Pa) influence of SVE on subslab/indoor pressure differential may occur but is not essential for effective VI mitigation. Indoor air quality improvements were evident in buildings 100 to 200 feet away from SVE including those without a measurable reversal of differential pressure across the slab or substantial reductions in subslab VOC concentration. These cases also demonstrated mitigation effects across a four-lane avenue with subsurface utilities. These findings suggest that SVE affects distant VI entry points with little observable impact on differential pressures and without relying on subslab VOC concentration reductions.  相似文献   
40.
Temporal and spatial variability of indoor air volatile organic compound (VOC) concentrations can complicate vapor intrusion (VI) assessment and decision-making. Indicators and tracers (I&T) of VI, such as differential temperature, differential pressure, and indoor radon concentration, are low-cost lines of evidence to support sampling scheduling and interpretation of indoor air VOC sampling results. This study compares peak indoor air chlorinated VOC concentrations and I&T conditions before and during those peak events at five VI sites. The sites differ geographically and in their VI conceptual site models (CSM). Relative to site-specific baseline values, the results show that cold or falling outdoor temperatures, rising cross slab differential pressures, and increasing indoor radon concentrations can predict peak VOC concentrations. However, cold outdoor air temperature was not useful at one site where elevated shallow soil temperature was a better predictor. Correlations of peak VOC concentrations to elevated or rising barometric pressure and low wind speed were also observed with some exceptions. This study shows how the independent variables that control or predict peak indoor air VOC concentrations are specific to building types, climates, and VI CSMs. More I&T measurements at VI sites are needed to identify scenario-specific baseline and peak related I&T conditions to improve decision-making.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号