首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7123篇
  免费   294篇
  国内免费   87篇
测绘学   252篇
大气科学   556篇
地球物理   1661篇
地质学   2361篇
海洋学   554篇
天文学   1392篇
综合类   31篇
自然地理   697篇
  2022年   32篇
  2021年   79篇
  2020年   95篇
  2019年   131篇
  2018年   191篇
  2017年   179篇
  2016年   244篇
  2015年   181篇
  2014年   215篇
  2013年   435篇
  2012年   282篇
  2011年   376篇
  2010年   318篇
  2009年   422篇
  2008年   357篇
  2007年   316篇
  2006年   294篇
  2005年   281篇
  2004年   278篇
  2003年   225篇
  2002年   237篇
  2001年   127篇
  2000年   150篇
  1999年   114篇
  1998年   125篇
  1997年   96篇
  1996年   96篇
  1995年   98篇
  1994年   99篇
  1993年   80篇
  1992年   101篇
  1991年   71篇
  1990年   65篇
  1989年   61篇
  1988年   65篇
  1987年   61篇
  1986年   65篇
  1985年   83篇
  1984年   69篇
  1983年   81篇
  1982年   72篇
  1981年   77篇
  1980年   59篇
  1979年   72篇
  1978年   57篇
  1977年   42篇
  1976年   43篇
  1975年   34篇
  1974年   35篇
  1973年   31篇
排序方式: 共有7504条查询结果,搜索用时 15 毫秒
991.
992.
We construct and evaluate a new three-dimensional model of crust and upper mantle structure in Western Eurasia and North Africa (WENA) extending to 700 km depth and having 1° parameterization. The model is compiled in an a priori fashion entirely from existing geophysical literature, specifically, combining two regionalized crustal models with a high-resolution global sediment model and a global upper mantle model. The resulting WENA1.0 model consists of 24 layers: water, three sediment layers, upper, middle, and lower crust, uppermost mantle, and 16 additional upper mantle layers. Each of the layers is specified by its depth, compressional and shear velocity, density, and attenuation (quality factors, Q P and Q S ). The model is tested by comparing the model predictions with geophysical observations including: crustal thickness, surface wave group and phase velocities, upper mantle n velocities, receiver functions, P-wave travel times, waveform characteristics, regional 1-D velocities, and Bouguer gravity. We find generally good agreement between WENA1.0 model predictions and empirical observations for a wide variety of independent data sets. We believe this model is representative of our current knowledge of crust and upper mantle structure in the WENA region and can successfully be used to model the propagation characteristics of regional seismic waveform data. The WENA1.0 model will continue to evolve as new data are incorporated into future validations and any new deficiencies in the model are identified. Eventually this a priori model will serve as the initial starting model for a multiple data set tomographic inversion for structure of the Eurasian continent.  相似文献   
993.
Amoeboid olivine aggregates (AOAs) are the most common type of refractory inclusions in CM, CR, CH, CV, CO, and ungrouped carbonaceous chondrites Acfer 094 and Adelaide; only one AOA was found in the CBb chondrite Hammadah al Hamra 237 and none were observed in the CBa chondrites Bencubbin, Gujba, and Weatherford. In primitive (unaltered and unmetamorphosed) carbonaceous chondrites, AOAs consist of forsterite (Fa<2), Fe, Ni-metal (5-12 wt% Ni), and Ca, Al-rich inclusions (CAIs) composed of Al-diopside, spinel, anorthite, and very rare melilite. Melilite is typically replaced by a fine-grained mixture of spinel, Al-diopside, and ±anorthite; spinel is replaced by anorthite. About 10% of AOAs contain low-Ca pyroxene replacing forsterite. Forsterite and spinel are always 16O-rich (δ17,18O∼−40‰ to −50‰), whereas melilite, anorthite, and diopside could be either similarly 16O-rich or 16O-depleted to varying degrees; the latter is common in AOAs from altered and metamorphosed carbonaceous chondrites such as some CVs and COs. Low-Ca pyroxene is either 16O-rich (δ17,18O∼−40‰) or 16O-poor (δ17,18O∼0‰). Most AOAs in CV chondrites have unfractionated (∼2-10×CI) rare-earth element patterns. AOAs have similar textures, mineralogy and oxygen isotopic compositions to those of forsterite-rich accretionary rims surrounding different types of CAIs (compact and fluffy Type A, Type B, and fine-grained, spinel-rich) in CV and CR chondrites. AOAs in primitive carbonaceous chondrites show no evidence for alteration and thermal metamorphism. Secondary minerals in AOAs from CR, CM, and CO, and CV chondrites are similar to those in chondrules, CAIs, and matrices of their host meteorites and include phyllosilicates, magnetite, carbonates, nepheline, sodalite, grossular, wollastonite, hedenbergite, andradite, and ferrous olivine.Our observations and a thermodynamic analysis suggest that AOAs and forsterite-rich accretionary rims formed in 16O-rich gaseous reservoirs, probably in the CAI-forming region(s), as aggregates of solar nebular condensates originally composed of forsterite, Fe, Ni-metal, and CAIs. Some of the CAIs were melted prior to aggregation into AOAs and experienced formation of Wark-Lovering rims. Before and possibly after the aggregation, melilite and spinel in CAIs reacted with SiO and Mg of the solar nebula gas enriched in 16O to form Al-diopside and anorthite. Forsterite in some AOAs reacted with 16O-enriched SiO gas to form low-Ca pyroxene. Some other AOAs were either reheated in 16O-poor gaseous reservoirs or coated by 16O-depleted pyroxene-rich dust and melted to varying degrees, possibly during chondrule formation. The most extensively melted AOAs experienced oxygen isotope exchange with 16O-poor nebular gas and may have been transformed into magnesian (Type I) chondrules. Secondary mineralization and at least some of the oxygen isotope exchange in AOAs from altered and metamorphosed chondrites must have resulted from alteration in the presence of aqueous solutions after aggregation and lithification of the chondrite parent asteroids.  相似文献   
994.
The Kodzko Metamorphic Complex (KMC) in the Central Sudetes consists of meta-sedimentary and meta-igneous rocks metamorphosed under greenschist to amphibolite facies conditions. They are comprised in a number of separate tectonic units interpreted as thrust sheets. In contrast to other Lower Palaeozoic volcano-sedimentary successions in the Sudetes, the two uppermost units (the Orla-Googowy unit and the Kodzko Fortress unit) of the KMC contain meta-igneous rocks with supra-subduction zone affinities. The age of the KMC was previously assumed to be Early Palaeozoic–Devonian, based on biostratigraphic findings in the lowermost tectonic unit. Our geochronological study focused on the magmatic rocks from the two uppermost tectonic units, exposed in the SW part of the KMC. Two orthogneiss samples from the Orla-Googowy unit yielded ages of 500.4±3.1 and 500.2±4.9 Ma, interpreted to indicate the crystallization age of the granitic precursors. A plagioclase gneiss from the same tectonic unit, intimately interlayered with metagabbro, provided an upper intercept age of 590.1±7.2 Ma, which is interpreted as the time of igneous crystallization. From the topmost Kodzko Fortress unit, a metatuffite was studied, which contains a mixture of genetically different zircon grains. The youngest 207Pb/206Pb ages, which cluster at ca. 590-600 Ma, are interpreted to indicate the maximum depositional age for this metasediment. The results of this study are in accord with a model that suggests a nappe structure for the KMC, with a Middle Devonian succession at the base and Upper Proterozoic units at structurally higher levels. It is suggested here that the KMC represents a composite tectonic suture that juxtaposes elements of pre-Variscan basement, intruded by the Lower Ordovician granite, against a Middle Palaeozoic passive margin succession. The new ages, combined with the overall geochemical variation in the KMC, indicate the existence of rock assemblages representing a Gondwana active margin. The recognition of Neoproterozoic subduction-related magmatism provides additional arguments for the hypothesis that equivalents of the Teplá-Barrandian domain are exposed in the Central Sudetes.  相似文献   
995.
Picoplankton abundance and distribution in the Mississippi River plume and its adjacent waters were studied during two cruises in April (high discharge) and October (low discharge) 2000 using flow cytometry. Concentrations of photosynthetic picoplankton,Synechococcus and picoeukaryotes were low in the turbid plume water but high in the coastal waters—i.e., the green waters resulting from mixing of river and oceanic waters. In this region, three types ofSynechococcus, characterized by their phycoerythrin chromophore composition, were found:Synechococcus cells with a low phycourobilin to phycoerythrobilin ratio (PUB:PEB) occurred throughout the region and dominated the totalSymechococcus abundance during both seasons; high PUB:PEB cells, which are the dominant strains in the open or blue ocean, occurred only at the outer shelf stations; and PEB-onlySynechococcus were abundant in most of the surveyed area during april, but were not observed during October.Prochlorococcus cyanobacteria only occurred at the oceanic stations, but extended farther inshore in October compared to April. This was a consequence of the reduced discharge and plume size during October. Picophytoplankton were a less important component of total phytoplankton biomass in the turbid river water and more important in the oligotrophic Gulf water. Seasonally, the contribution of picophytoplankton to total phytoplankton biomass in the surveyed area was higher during low discharge in October than during high discharge in April, even though the spring 2000 river discharge was unusually low and might not present a typical high discharge scenario. The abundance of heterotrophic bacteria was weakly correlated to chlorophylla (chla) concentration, but better correlated to picophytoplankton biomass. A higher proportion of High DNA bacteria occurred in the river-impacted regions during both seasons, with the ratio of High DNA bacteria to Low DNA bacteria significantly higher in April.  相似文献   
996.
Since 1999, Ohio EPA hydrogeologists have used two analytic element models (AEMs), the proprietary software GFLOW and U.S. EPA's WhAEM, to delineate protection areas for 535 public water systems. Both models now use the GFLOW2001 solution engine, integrate well with Geographic Information System (GIS) technology, have a user-friendly graphical interface, are capable of simulating a variety of complex hydrogeologic settings, and do not rely upon a model grid. These features simplify the modeling process and enable AEMs to bridge the gap between existing simplistic delineation methods and more complex numerical models. Ohio EPA hydrogeologists demonstrated that WhAEM2000 and GFLOW2000 were capable of producing capture zones similar to more widely accepted models by applying the AEMs to eight sites that had been previously delineated using other methods. After the Ohio EPA delineated protection areas using AEMs, more simplistic delineation methods used by other states (volumetric equation and arbitrary fixed radii) were applied to the same water systems to compare the differences between various methods. GIS software and two-tailed paired t-tests were used to quantify the differences in protection areas and analyze the data. The results of this analysis demonstrate that AEMs typically produce significantly different protection areas than the most simplistic delineation methods, in terms of total area and shape. If the volumetric equation had been used instead of AEMs, Ohio would not have protected 265 km2 of critical upgradient area and would have overprotected 269 km2 of primarily downgradient land. Since an increasing number of land-use restrictions are being tied to drinking water protection areas, this analysis has broad policy implications.  相似文献   
997.
Bayer P  Finkel M 《Ground water》2006,44(2):234-243
We investigate the performance of vertical hydraulic barriers in combination with extraction wells for the partial hydraulic isolation of contaminated aquifer areas. The potential advantage of such combinations compared to a conventional pump-and-treat system has already been demonstrated in a previous study. Here we extend the scope of the performance analysis to the impact of uncertainty in the regional flow direction as well as to highly heterogeneous aquifer transmissivity distributions. In addition, two new well-barrier scenarios are proposed and analyzed. The hydraulic efficiency of the scenarios is rated based on the expected (mean) reduction of the pumping rate that is required to achieve downgradient contaminant capture. The uncertain spatial distribution of aquifer transmissivity is considered by means of unconditioned Monte Carlo simulations. The significance of uncertain background flow conditions is incorporated by computing minimized pumping rates for deviations of the regional flow direction up to 30 degrees from a normative base case. The results give an answer on how pumping rates have to be changed for each barrier-well combination in order to achieve robust systems. It is exposed that in comparison to installing exclusively wells, the barrier-supported approach generally yields savings in the (average) pumping rate. The particular efficiency is shown to be highly dependent on the interaction of variance and integral scale of transmissivity distribution, well and barrier position, as well as direction of background flow.  相似文献   
998.
999.
Sediment traps were used to evaluate the frequency, cause, and relative intensity of sediment mobility/resuspension along the fringing coral reef off southern Molokai (February 2000-May 2002). Two storms with high rainfall, floods, and exceptionally high waves resulted in sediment collection rates>1000 times higher than during non-storm periods, primarily because of sediment resuspension by waves. Based on quantity and composition of trapped sediment, floods recharged the reef flat with land-derived sediment, but had a low potential for burying coral on the fore reef when accompanied by high waves. The trapped sediments have low concentrations of anthropogenic metals. The magnetic properties of trapped sediment may provide information about the sources of land-derived sediment reaching the fore reef. The high trapping rate and low sediment cover indicate that coral surfaces on the fore reef are exposed to transient resuspended sediment, and that the traps do not measure net sediment accumulation on the reef surface.  相似文献   
1000.
The ECOMAN was initiated in 2001 by the University of Plymouth, UK, Plymouth Marine Laboratory and the Department of the Environment, Fisheries and Rural Affairs (DEFRA) to address the need for more pragmatic assessment techniques linking environmental degradation with its causes. The primary aim of the project was to develop an evidence-based approach in which suites of easy-to-use, cost-effective and environmentally valid biological responses (biomarkers) could be used together to assess the health of coastal systems through the general condition of individuals. A range of sub-lethal endpoints, chosen to reflect successive levels of biological organisation (molecular, cellular, physiological), was evaluated in common coastal organisms showing different feeding types (filter feeding, grazing, predation) and habitat requirements (estuary, rocky shore). Initially, the suite of biomarkers was used in laboratory studies to determine the relative sensitivities of key species within different functional groups to common contaminants. These results were then validated in field studies performed in a range of ecosystems exhibiting different degrees/signatures of contamination. Here, an example is provided of a field study in the Humber Estuary, UK, which illustrates how multivariate statistical analysis can be used to identify patterns of response to discriminate between contaminated and clean sites. The use of a holistic, integrated approach of this kind is advocated as a practical means of assessing the impact of chemical contamination on organismal health and of ranking the status of marine ecosystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号