首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   4篇
测绘学   4篇
大气科学   5篇
地球物理   14篇
地质学   19篇
自然地理   3篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   4篇
  2014年   4篇
  2013年   2篇
  2012年   2篇
  2010年   6篇
  2008年   3篇
  2007年   1篇
  2005年   1篇
  2002年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
41.
We set up an automatic weather station over a playa (the flat floor of an undrained desert basin that becomes at times a shallow lake), approximately 65 km east–west by 130 km north–south, located at the U.S. Army Dugway Proving Ground (40°08′N, 113°27′W, 1124 m above mean sea level) in north-western Utah, U.S.A., in 1999. This station measured the incoming (Rsi) and outgoing (Rso) solar or shortwave radiation using two CM21 Kipp & Zonen pyranometers (one inverted), the incoming (Rli or atmospheric) and outgoing (Rlo or terrestrial) longwave radiation, using two CG1 KippZonen pyrgeometers (one inverted), and the net (Rn) radiation using a Q*7 net radiometer (Radiation Energy Balance System, REBS). We also measured the 10-m wind speed (U10) and direction (R.M. Young wind monitor) and precipitation (Campbell Sci., Inc.). The measurements were taken every 2 s, averaged into 20-min, continuously, throughout the year. The annual (August 1999 – August 2000) comparisons of global or solar radiation and windiness with two other stations in central (Hunter) and northern (Logan) Utah, indicate higher solar radiation (Rsi,Dugway=7797 MJ m−2 period−1vs. Rsi, Hunter=7021 MJ m−2 period−1 and Rsi, Logan=6865 MJ m−2 period−1) and much higher annual mean windiness (UDugway=387 km day−1vs. UHunter=275 km day−1 and ULogan=174 km day−1) throughout the period over the playa. These data reveal the possibility of simultaneously harvesting these two sources of clean energies at this vast and uniform playa.  相似文献   
42.
To investigate the alfalfa crop response to environmental factors, a Bowen ratio-energy balance method was used to evaluate short-term alfalfa canopy resistance. Continuous evapotranspiration (ET a ) and the aerodynamic resistance (r a ) for an alfalfa crop in each 20-min interval were calculated. Using the calculated ET a and r a and the Penman-Monteith approach, the bulk stomatal or actual canopy resistance (r c ) was evaluated. The continuous 20-min resistances were computed for clear and partially cloudy sky conditions, and different average crop heights. The results show that this technique can satisfactorily be used to study the manner in which the aerodynamic and canopy resistances respond to short-term variations in weather elements such as photosynthetically active radiation (PAR), wind speed and atmospheric saturation vapor deficit.Research Assistant Professor and Assistant Utah State Climatologist, Research Associate Professor and Research Assistant, respectively.  相似文献   
43.
This paper uses nonlinear truss models for the analysis of shear‐dominated reinforced concrete (RC) columns subjected to cyclic loading. A previously established method, aimed to the analysis of RC walls, is enhanced to allow simulations of column members. The concrete constitutive equations are modified to account for the contribution of the aggregate interlock to the shear resistance. Additionally, an equation is proposed to determine the inclination angle of the diagonal members in the truss models. The modeling approach is validated using the results of quasi‐static and dynamic tests on shear‐dominated RC columns. The combination of predictive capabilities and conceptual simplicity establishes truss‐based models as an attractive approach for the systematic analysis of shear‐dominated RC frame construction. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
44.
The existence of an increasing trend in average temperatures during the last 50 years is widely acknowledged. Furthermore, there is compelling evidence of the variability of extremes, and rapid strides are made in studies of these events. Indeed, by extending the results of the “extreme value theory” (EVT) to the non-stationary case, analyses can examine the presence of trends in extreme values of stochastic processes. Definition of extreme events, their statistical significance as well as their interpretations have to be handled with great care when used for environmental concerns and public safety. Thus, we will discuss the validity of the hypothesis allowing the use of mathematical theories for these problems. To answer safety requirements, respect installation norms and reduce public risk, return levels are a major operational goal, obtained with the EVT. In this paper, we give quantitative results for observations of high temperatures over the 1950–2003 period in 47 stations in France. We examined the validity of the non-stationary EVT and introduced the notion of return levels (RL) in a time-varying context. Our analysis puts particular accent on the difference between methods used to describe extremes, to perform advanced fits and tests (climatic science), and those estimating the probability of rare future events (security problems in an evolving climate). After enouncing the method used for trend identification of extremes in term of easily interpretable parameters of distribution laws, we apply the procedure to long series of temperature measurements and check the influence of data length on trend estimation. We also address the problem of choosing the part of observations allowing appropriate extrapolation. In our analysis, we determined the influence of the 2003 heat wave on trend and return-level estimation comparing it to the RL in a stationary context. The application of the procedure to 47 stations spread over France is a first step for a refined spatial analysis. Working on the behavior of distribution parameters while assessing trend identification is a primary tool in order to classify climatic change with respect to the location of the station and open a systematic work using the same methodology for other variables and multivariate studies.  相似文献   
45.
The characterization of river–aquifer connectivity in karst environments is difficult due to the presence of conduits and caves. This work demonstrates how geophysical imaging combined with hydrogeological data can improve the conceptualization of surface-water and groundwater interactions in karst terrains. The objective of this study is to understand the association between the Bell River and karst-alluvial aquifer at Wellington, Australia. River and groundwater levels were continuously monitored, and electrical resistivity imaging and water quality surveys conducted. Two-dimensional resistivity imaging mapped the transition between the alluvium and karst. This is important for highlighting the proximity of the saturated alluvial sediments to the water-filled caves and conduits. In the unsaturated zone the resistivity imaging differentiated between air- and sediment-filled karst features, and in the saturated zone it mapped the location of possible water- and sediment-filled caves. Groundwater levels are dynamic and respond quickly to changes in the river stage, implying that there is a strong hydraulic connection, and that the river is losing and recharging the adjacent aquifer. Groundwater extractions (1,370 ML, megalitres, annually) from the alluvial aquifer can cause the groundwater level to fall by as much as 1.5 m in a year. However, when the Bell River flows after significant rainfall in the upper catchment, river-leakage rapidly recharges the alluvial and karst aquifers. This work demonstrates that in complex hydrogeological settings, the combined use of geophysical imaging, hydrograph analysis and geochemical measurements provide insights on the local karst hydrology and groundwater processes, which will enable better water-resource and karst management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号