首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4766篇
  免费   166篇
  国内免费   98篇
测绘学   146篇
大气科学   403篇
地球物理   1111篇
地质学   1638篇
海洋学   407篇
天文学   978篇
综合类   38篇
自然地理   309篇
  2021年   65篇
  2020年   66篇
  2019年   66篇
  2018年   128篇
  2017年   111篇
  2016年   147篇
  2015年   103篇
  2014年   125篇
  2013年   246篇
  2012年   148篇
  2011年   218篇
  2010年   198篇
  2009年   223篇
  2008年   221篇
  2007年   180篇
  2006年   167篇
  2005年   164篇
  2004年   163篇
  2003年   158篇
  2002年   207篇
  2001年   178篇
  2000年   146篇
  1999年   118篇
  1998年   79篇
  1997年   93篇
  1996年   82篇
  1995年   73篇
  1994年   73篇
  1993年   54篇
  1992年   42篇
  1991年   50篇
  1990年   47篇
  1989年   34篇
  1987年   48篇
  1986年   36篇
  1985年   51篇
  1984年   61篇
  1983年   49篇
  1982年   51篇
  1981年   43篇
  1980年   43篇
  1979年   29篇
  1978年   37篇
  1977年   30篇
  1976年   39篇
  1975年   40篇
  1974年   44篇
  1973年   28篇
  1972年   29篇
  1971年   28篇
排序方式: 共有5030条查询结果,搜索用时 187 毫秒
941.
Saline water from a storm surge can flow down storm-damaged submerged water supply wells and contaminate boreholes and surrounding aquifers. Using data from conventional purging techniques, aquifer test response analysis, chemical analysis, and regression analysis of chloride/silica (Cl/Si) ratio, equations were derived to estimate the volume of saline water intrusion into a well and a porous media aquifer, the volume of water needed to purge a well shortly following an intrusion event, and the volume of water needed after delay of several or more months, when the saline plume has expanded. Purging time required is a function of volume of water and pumping rate. The study site well is located within a shoreline community of Lake Pontchartrain, St. Tammany Parish, in southeastern Louisiana, United States, which was impacted by two hurricane storm surges and had neither been rehabilitated nor chlorinated prior to our study. Chemical analysis of water samples in fall 2005 and purging of well and aquifer in June 6, 2006, indicated saline water had intruded the well in 2005 and the well and aquifer in 2006. The volume of water needed to purge the study well was approximately 200 casing volumes, which is significantly greater than conventionally used during collection of water samples for water quality analyses.  相似文献   
942.
Population growth along the southeastern United States coast has precipitated the conversion of forested watersheds to suburban and urban ones. This study sampled creeks representing forested, suburban, and urban watersheds along a longitudinal gradient for indicators of water quality, including traditional indicator bacteria (fecal coliforms and enterococci) and alternative viral indicators (male-specific and somatic coliphages). Tested microorganisms were generally distributed with highest concentrations in creek headwaters and in more developed watersheds. The headwaters also showed the strongest predictive relationship between indicator concentrations and urbanization as measured by impervious cover. A seasonal pattern was observed for indicator bacteria but not for indicator viruses. Coliphage typing indicated the likely source of contamination was nonhuman. Results suggest that headwater creeks can serve as sentinel habitat, signaling early warning of public health concerns from land-based anthropogenic activities. This study also implies the potential to eventually forecast indicator concentrations under land use change scenarios.  相似文献   
943.
Local reactivations of landslides in forests are rarely reported in landslide catalogues. The occurrence of hillslope sections with fresh morphological landslide features in forested old, deep‐seated landslides, however, suggests that landslide reactivations are not restricted to residential areas. In this study, a dendrogeomorphological analysis of beech stands was used to investigate the periods of reactivation of a deep‐seated rotational slide in the Koppenberg forest (Flemish Ardennes, Belgium). The relation to rainfall and the correspondence to landslide reactivations reported in a nearby built‐up area were also analysed. A dendrometrical study preceding the dendrochronological analysis proved that, compared with the nearby reference site, trees on the Koppenberg forest landslide site were significantly more inclined and showed more knees, indicating that the landslide site has not stabilized yet. As the sampled trees are younger than the landslide, dendrochronology did not allow determination of the year in which the landslide was initiated, but analysis of two different tree ring width parameters (i.e. ring eccentricity and growth change) calculated for trees sampled on the Koppenberg landslide and the reference site proved to be of great help in determining the temporal sequence of landslide reactivation. During the past 80 years, several periods indicative of local reactivations (i.e. 1943–1945, 1949–1952, 1967–1970, 1972–1977, 1979–1981, 1988–1997) were found within the investigated landslide, but delineation of the spatial extent of the reactivations during these indicative periods was not straightforward. These periods generally correspond to years with above‐average rainfall. Finally, the fact that at least 34% of the years indicative of reactivation of the Koppenberg forest landslide correspond to a year in which a landslide reactivation was reported in the Flemish Ardennes suggests that in built‐up areas, apart from anthropogenic interventions, natural triggering factors remain very important. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
944.
945.
This paper focuses on the main morphological, physical, chemical and mineralogical features of an andic-like soil, widely outcropping in the Sila upland plateau of Calabria (southern Italy), and its potential role in tephrostratigraphy. A multidisciplinary and multiscale approach allowed identification of this soil as a “masked” distal archive of volcanic products, developed on granite rocks and sediments with a coeval pyroclastic input during pedogenesis. The study demonstrates that the contribution of volcanic parent materials can be successfully hypothesized and assessed even in the absence, limited extent or poor preservation of primary eruptive products. The soil has an Andisol-like appearance, despite laboratory data that do not match the entire suite of diagnostic criteria for the Andisol taxonomic order. Geomorphological, stratigraphic and pedologic results, coupled with tephrostratigraphic and radiometric data, concur to suggest a Late Pleistocene(?) to Holocene age of the Andisol-like soil. In particular, the rhyolitic chemical composition of small-sized glass fragments (identified by SEM–EDS analyses) indicates soil genesis contributed by volcanic ash, probably sourced from Aeolian Arc explosive activity spanning the last 30 ka. Accordingly, the evidence of limited relict clay illuviation and the specific type of pedogenesis allowing the development of andic properties (in turn related to the neoformation of clay minerals from the weathering of volcanic glass) are consistent with a climatic shift from a seasonally-contrasted to a constantly humid pedoenvironment. This change can be ascribed to the Lateglacial(?) or Early–Middle Holocene to Late Holocene transition. Calibrated AMS 14C dates performed on charcoal fragments sampled from three representative soil profiles, provide Late Holocene ages (3136 ± 19, 343 ± 16 and 92 ± 24 yr BP), in accord with archaeological finds. On the basis of the consistent stratigraphic position, lateral continuity and wide extent, the soil can be considered a good pedostratigraphic marker in the Sila highlands and is informally defined as the “Cecita Lake geosol”. It supplies valuable time constraints for the underlying (occasionally overlying) deposits and/or soils. Moreover, it allows regional-scale morphostratigraphic correlations and detailed reconstruction of Late Pleistocene–Holocene geomorphic events in Calabria, a very suitable region for distal tephra deposition in the central Mediterranean peri-volcanic area. The effects of high-energy volcanic eruptions are interfingered with or superimposed by other geomorphic processes and climatic or anthropogenic signals.  相似文献   
946.
Stratigraphic reconstruction of the Upper Pollara eruption has allowed for the inference of eruptive mechanisms and the distillation of a sedimentological model for pyroclastic density currents (PDCs) moving across variable topography. The pre-eruptive topography in the study area was characterised by a tuff ring-like morphology, with both inward and outward dipping slopes. Highly viscous, moderately porphyritic, dacitic to rhyolitic magmas fed the eruption, which was characterised by a Vulcanian eruptive style. The stratigraphic succession was divided into five eruption units (EUs), which result from different phases of the eruption separated by stases. Sustained columns occurred only during EU1, while PDC generation dominates EU2–5. Lithofacies analysis of the PDC deposits indicates the prevalence of massive coarse-grained deposits on the inner slopes of the Pollara crater, which are interpreted as the deposits of a flow-boundary zone dominated by granular flow or fluid escape regimes. Dune-bedded, massive to stratified lithofacies dominate the outer slopes of the Pollara crater, and are interpreted as the deposits of PDCs with flow-boundary zones in which traction played a major role. Thin, massive PDC deposits are exposed on the sub-horizontal Malfa terrace, and are interpreted as representative of flow-boundary zones dominated by a granular flow regime. The occurrence of stacked deposits indicates that most of the PDCs were characterised by unsteady pulsatory behaviour, with development of trains of pulses during their transport. The downcurrent lithofacies transitions observed for the Upper Pollara deposits have finally been compared with other similar lithofacies associations which have been described for short-lived PDCs at tuff rings, in order to discuss the influence of pre-eruptive topography on lithofacies association.  相似文献   
947.
Flume experiments simulating concentrated runoff were carried out on remolded silt loam soil samples (0·36 × 0·09 × 0·09 m3) to measure the effect of rainfall‐induced soil consolidation and soil surface sealing on soil erosion by concentrated flow for loess‐derived soils and to establish a relationship between soil erodibility and soil bulk density. Soil consolidation and sealing were simulated by successive simulated rainfall events (0–600 mm of cumulative rainfall) alternated by periods of drying. Soil detachment measurements were repeated for four different soil moisture contents (0·04, 0·14, 0·20 and 0·31 g g?1). Whereas no effect of soil consolidation and sealing is observed for critical flow shear stress (τcr), soil erodibility (Kc) decreases exponentially with increasing cumulative rainfall depth. The erosion‐reducing effect of soil consolidation and sealing decreases with a decreasing soil moisture content prior to erosion due to slaking effects occurring during rapid wetting of the dry topsoil. After about 100 mm of rainfall, Kc attains its minimum value for all moisture conditions, corresponding to a reduction of about 70% compared with the initial Kc value for the moist soil samples and only a 10% reduction for the driest soil samples. The relationship estimating relative Kc values from soil moisture content and cumulative rainfall depth predicts Kc values measured on a gradually consolidating cropland field in the Belgian Loess Belt reasonably well (MEF = 0·54). Kc is also shown to decrease linearly with increasing soil bulk density for all moisture treatments, suggesting that the compaction of thalwegs where concentrated flow erosion often occurs might be an alternative soil erosion control measure in addition to grassed waterways and double drilling. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
948.
Modelling increased soil cohesion due to roots with EUROSEM   总被引:3,自引:0,他引:3  
As organic root exudates cause soil particles to adhere firmly to root surfaces, roots significantly increase soil strength and therefore also increase the resistance of the topsoil to erosion by concentrated flow. This paper aims at contributing to a better prediction of the root effects on soil erosion rates in the EUROSEM model, as the input values accounting for roots, presented in the user manual, do not account for differences in root density or root architecture. Recent research indicates that small changes in root density or differences in root architecture considerably influence soil erosion rates during concentrated flow. The approach for incorporating the root effects into this model is based on a comparison of measured soil detachment rates for bare and for root‐permeated topsoil samples with predicted erosion rates under the same flow conditions using the erosion equation of EUROSEM. Through backwards calculation, transport capacity efficiencies and corresponding soil cohesion values can be assessed for bare and root‐permeated topsoils respectively. The results are promising and present soil cohesion values that are in accordance with reported values in the literature for the same soil type (silt loam). The results show that grass roots provide a larger increase in soil cohesion as compared with tap‐rooted species and that the increase in soil cohesion is not significantly different under wet and dry soil conditions, either for fibrous root systems or for tap root systems. Power and exponential relationships are established between measured root density values and the corresponding calculated soil cohesion values, reflecting the effects of roots on the resistance of the topsoil to concentrated flow incision. These relationships enable one to incorporate the root effect into the soil erosion model EUROSEM, through adapting the soil cohesion input value. A scenario analysis shows that the contribution of roots to soil cohesion is very important for preventing soil loss and reducing runoff volume. The increase in soil shear strength due to the binding effect of roots on soil particles is two orders of magnitude lower as compared with soil reinforcement achieved when roots mobilize their tensile strength during soil shearing and root breakage. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
949.
Popocatépetl Volcano is located in the central Mexican Volcanic Belt, within a densely populated region inhabited by over 20 million people. The eruptive history of this volcano indicates that it is capable of producing a wide range of eruptions, including Plinian events. After nearly 70 years of quiescence, Popocatépetl reawakened in December 21, 1994. The eruptive activity has continued up until the date of this submission and has been characterized by a succession of lava dome growth-and-destruction episodes, similar to events that have apparently been typical for Popocatépetl since the fourteenth century. In this regime, the episodes of effusive and moderately explosive activity alternate with long periods of almost total quiescence. In this paper we analyze five years of volcano-tectonic seismicity preceding the initial eruption of the current episode. The evolution of the V-T seismicity shows four distinct stages, which we interpret in terms of the internal processes which precede an eruption after a long period of quiescence. The thermal effects of a magma intrusion at depth, the fracturing related to the slow development of magma-related fluid pathways, the concentration of stress causing a protracted acceleration of this process, and a final relaxation or redistribution of the stress shortly before the initial eruption are reflected in the rates of V-T seismic energy release. A hindsight analysis of this activity shows that the acceleration of the seismicity in the third stage asymptotically forecast the time of the eruption. The total seismic energy release needed to produce an eruption after a long period of quiescence is related to the volume of rock that must be fractured so imposing a characteristic threshold limit for polygenetic volcanoes, limit that was reached by Popocatépetl before the eruption.  相似文献   
950.
Broad-scale mapping of marine benthos is required for marine resource management and conservation. This study combines textural derivatives based on bathymetry from multibeam hydroacoustics with underwater video observations to model and map sessile biota between 10- and 60-m water depth over 35 km2 in Point Addis Marine National Park (MNP), Vic., Australia. Classification tree models and maps were developed for macroalgae (all types, mixed red algae, Ecklonia, and rhodoliths) and sessile invertebrates (all types, sponges, and ascidians). Model accuracy was tested on 25% of the video observation dataset reserved from modelling. Models fit well for most macroalgae categories (correct classification rates of 67–84%), but are not as good for sessile invertebrate classes (correct classification rates of 57–62%). The poor fit of the sessile invertebrate models may be the combined result of grouping organisms with different environmental requirements and the effect of false absences recorded during video interpretation due to poor image quality. Probability maps, binary single-class maps, and multi-class maps supply spatially explicit, detailed information on the distribution of sessile benthic biota within the MNP and provide information at a landscape-scale for ecological investigations and marine management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号